

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pySFML - Cython 0.2 documentation

Welcome to pySFML 2 - Cython’s documentation!

A new Python 2/3 binding for SFML 2, made with Cython [http://cython.org]. Most features of SFML are currently available,
but this is still a work in progress. Feel free to report any issue
you encounter.

You can find the source code, downloads and the issue tracker here:
https://github.com/bastienleonard/pysfml-cython.

There is also a thread on the official forums:
http://en.sfml-dev.org/forums/index.php?topic=5311.0. I use it to make
announcements and answer questions, but if you want to report an
issue, please consider using the Github tracker. I sometimes forget
bugs and suggestions that I read on the forums.

The documentation should now be complete, but if you need more
detailed information, the SFML 2 documentation [http://sfml-dev.org/documentation/2.0/annotated] may be useful.

If you haved used SFML in the past, you will probably want to read
Learning pySFML from a C++ SFML background.

Note

Make sure you read the Caveats page, so that you know what
the most important current limitations are.

Contents:

	Introduction
	What is this project about?

	What isn’t this project about?

	Doesn’t SFML already have a Python binding?

	Why SFML 2?

	What does “Cython” mean? Can I use this module with Python 2/3?

	Caveats

	Frequently Asked Questions

	Changelog

	Building the module
	Binary releases

	Getting SFML 2

	Building on Windows

	Common build options

	Building without Cython

	Building with Cython installed

	Building a Python 3 module

	Tutorials
	pySFML basics

	Learning pySFML from a C++ SFML background

	API reference
	Exceptions

	System

	Graphics

	Events

	Audio

	Licenses
	Project license

	Documentation license

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

Introduction

What is this project about?

This project allows you use to use SFML 2 [http://sfml-dev.org/]
from Python. As SFML’s author puts it, “SFML is a free multimedia C++
API that provides you low and high level access to graphics, input,
audio, etc.” It’s the kind of library you use for writing multimedia
applications such as games or video players.

What isn’t this project about?

This binding currently doesn’t aim to be used as an OpenGL wrapper,
unlike the original SFML library. This is because there are already
such wrappers available in Python, such as Pygame, PyOpenGL or pyglet.

Doesn’t SFML already have a Python binding?

It does, but the binding needed to be rewritten, mainly because the
current binding is directly written in C++ and is a maintenance
nightmare. This new binding is written in Cython [http://cython.org], hence the name.

Also, I find that the current binding lacks some features, such as:

	It doesn’t follow Python’s naming conventions.

	It lacks some fancy features such as properties, exceptions and
iterators (for example, my binding allows you to iterate on events
with a simple for loop).

You should also note that the current PySFML release on SFML’s website
is buggy (for example, Image.SetSmooth() doesn’t work).
You’d need to compile the latest version yourself to avoid these bugs.

Why SFML 2?

SFML 1 is now part of the past; it contains some important bugs and
apparently won’t be updated anymore.

SFML 2 is still a work in progress, but it’s stable enough for many
projects and it only breaks a few parts of SFML 1’s API.

SFML 2 brings in important changes, such as new features, performance
improvement and a more consistent API. In my opinion, if you aren’t
tied to SFML 1, you should stop using it and try SFML 2.

What does “Cython” mean? Can I use this module with Python 2/3?

I use it in the binding’s name to help distinguish it with other
bindings. The fact the it’s written with Cython means that it’s easier
to maintain, and as fast as a C or C++ binding (although some parts
might need optimizations).

Don’t worry, the module works with the traditional Python interpreter
(CPython), version 2 or 3. (For more information, see
Building the module.) However, it doesn’t work with other
interpreters like PyPy.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

Caveats

With older versions of Cython, the binding won’t work correctly when
built straight from the Git repo. See Building with Cython installed for
more information.

Windows programs sometimes crash just before exiting. Starting from
pySFML 0.2.1, the default font has been removed, which should solve a
lot of deallocation problems. Christoph Gohlke’s installers also seem
to generally be more reliable, so as far as I know, newer installers
shouldn’t have this bug.

A current limitation is that Texture objects won’t work as
expected unless they are created after your RenderWindow. It
isn’t a big problem in practice, but it’s something to keep in mind
until the issue is fixed. This seems to be related to a bug in SFML:
https://github.com/LaurentGomila/SFML/issues/160 It may also be
dependent on the platform, but even if it works correctly on your
system, you shouldn’t rely on it for now.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

Frequently Asked Questions

How do I draw a line?

The general answer is: use RectangleShape. If your line
has a width of one pixel, you can also use
RenderTarget.draw() with two vertices and the LINES
primitive.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

Changelog

0.2.1 (12/08/2012):

	RenderWindow.display() doesn’t release the GIL anymore, as it would
cause segmentation faults when integrating with PyQt.

	Fixed crashes when comparing Time objects with None.

	Removed the default font, since it was removed in C++ SFML. If you still
encounter crashes at the end of the program on Windows, this should fix it.

0.2 (07/20/2012):

	Keyboard.BACK has been renamed to Keyboard.BACK_SPACE, to fit with
the C++ SFML change.

	Added support for file streaming: see SoundStream,
SoundBuffer.load_from_stream(), Music.open_from_stream(),
Font.load_from_stream(), Image.load_from_stream(),
Texture.load_from_stream(),
Shader.load_both_types_from_stream() and
Shader.load_from_stream().

	RectangleShape.size doesn’t raise exceptions for no reason anymore.

	Removed RenderTexture.create(), the constructor should be used instead.

	RenderTexture.active now raises an exception when setting it causes an
error.

	Added copy() and __repr__() methods in Vertex.

	Removed View.get_transform() and View.get_inverse_transform(); SFML’s
documentation says they are meant for internal use only.

	View.from_rect() and View.reset() now accept tuples.

	Setting Shape.texture to None now does the right thing at the C++
level (it sets the underlying texture pointer to NULL).

	The API reference should now be complete, and it has been reorganized to avoid
huge pages. A FAQ page has been started.

0.1.3 (06/19/2012):

	Replaced Sprite.text_rect with two
Sprite.get_texture_rect() and Sprite.set_texture_rect().

	RenderStates‘ constructor now takes a blend
mode as its first parameter.

	Added missing methods in ConvexShape (get_point(),
get_point_count(), set_point(), set_point_count()). The
point_count attribute has been removed.

	Added RenderWindow.height, RenderWindow.width,
Texture.bind(), Texture.NORMALIZED,
Texture.PIXELS, Color.TRANSPARENT,
Image.flip_horizontally(), Image.flip_vertically() and
RenderWindow.active.

	Glyph‘s attributes are now modifiable.

	RenderWindow.wait_event() now raises PySFMLException
when the underlying C++ method fails. (In the past, the error would
be ignored.)

	Image.get_pixels() now returns None when the image is empty.

	Image.get_pixel() and Image.set_pixel() now raise
IndexError if the pixel coordinates are out of range.

	Image.save_to_file() now raises PySFMLException when an
error occurs.

	The constructors of Keyboard, Mouse and
Style now raise NotImplementedError.

	Fixed a bug where SFML would fail to raise an exception. This
typically happened when a tuple, a FloatRect or an
IntRect was expected, but another type was passed.

	Added the tests in the source release.

	Completed the documentation of many graphics classes.

0.1.2:

	Added copy() methods in Transform, IntRect,
FloatRect, Time and Sprite.

	RenderTarget.draw() now also accepts a tuple of vertices. Also
fixed error handling when the objects contained in the list/tuple
have the wrong type.

	Added == and != operators in IntRect and
FloatRect.

	Transform‘s constructor now creates an identity transform
when called with no arguments.

	Transform now supports the *= operator. (It already worked in
the past, because Python will automatically use the * operator
if *= isn’t provided, but it’s slower.)

	SoundBuffer.save_to_file() now raises an exception in case of
failure. (In the past, it didn’t report errors in any way.)

	Removed Chunk.sample_count and
SoundBuffer.sample_count. Instead, use len(Chunk.samples)``and
``len(SoundBuffer.samples), respectively.

	SoundBuffer.load_from_samples() now uses strings/bytes (for
Python 2/3, respectively) instead of list.

	Fixed bugs in Font, Image and Shader
classmethods that load from strings/bytes objects.

	Added Joystick.update().

	Transformable isn’t abstract anymore, and can be inherited
safely.

	Completed the events and audio documentation, added documentation
for some graphics classes.

	Expanded the tutorial for C++ developers.

0.1.1:

	The seconds(), milliseconds() and microseconds()
functions are removed. Use the Time constructor with
keyword arguments instead, e.g. milliseconds(200) becomes
Time(milliseconds=200).

	Made Sprite more straightforward to inherit, __cinit__() won’t
raise errors because it automatically gets passed the constructor
arguments anymore.

	Fixed a bug in Time where some arithemtic operators would always
raise an exception.

	Fixed a bug in RenderStates where internal attributes and properties
got mismatched because they had the same name.

	Added a __repr__() method in Time (mostly to have more
readable unit test errors, __str__() already existed in the
past).

	Documentation: added a “caveats” page, and a new tutorial for people
who are coming from a C++ SFML background.

	Added some unit tests.

0.1:

	The module is now called sfml. To keep using the sf prefix, import the module
with import sfml as sf.

	Python 3 users don’t need to use bytes instead of strings
anymore. When a C++ method expects a byte string and the user passes
a Unicode object, it is encoded to a byte string with
sfml.default_encoding (UTF-8 by default, you can change it
as needed).

	Added the Listener class.

	Added audio streaming (still lacking performance-wise).

	Added Texture.copy_to_image().

	Improved examples.

	Fixed various bugs and memory leaks.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

Building the module

Binary releases

If you’re on Windows, you can download the current binary release and
ignore most of this page. Some older installers are available on
Github, but you should really get the more recent installers that
Christoph Gohlke provides on his website:
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pysfml

On other platforms, there may still be easier ways to build the
module. For example, someone has written AUR scripts for Arch Linux
users:

	https://aur.archlinux.org/packages.php?ID=50841

	https://aur.archlinux.org/packages.php?ID=50842

Getting SFML 2

The first thing you should do is get SFML 2 [https://github.com/LaurentGomila/SFML] and make sure it works. If
you want the latest version, please refer to the official tutorial:
http://sfml-dev.org/tutorials/2.0/compile-with-cmake.php There is also
a slightly older RC binary release that is mainly used by Windows
users: http://www.sfml-dev.org/download.php#2.0-rc

Some platforms may make it easier to install it, for example Arch
Linux users can get it from the AUR.

If you are on Windows, you will probably want to copy SFML’s headers
and libraries directories to the corresponding directories of your
compiler/IDE, and SFML’s DLLs to Windows’ DLL directory.

Building on Windows

If you don’t have a C++ compiler installed, I suggest using MinGW [http://www.mingw.org].

If you are using a recent version of MinGW, you may encounter this
error when building the module:

error: unrecognized command line option '-mno-cygwin'

The problem [http://bugs.python.org/issue12641] is that the
-mno-cygwin has been dropped in recent MinGW releases. A quick
way to fix this is to remove the option from the distutils
source. Find the distutils/cygwinccompiler.py in your Python
installation (it should be something like
C:\Python27\Lib\distutils\cygwinccompiler.py). Find the
MinGW32CCompiler class and remove the -mno-cygwin options:

class CygwinCCompiler
self.set_executables(compiler='gcc -mno-cygwin -O -Wall',
 compiler_so='gcc -mno-cygwin -mdll -O -Wall',
 compiler_cxx='g++ -mno-cygwin -O -Wall',
 linker_exe='gcc -mno-cygwin',
 linker_so='%s -mno-cygwin %s %s'
 % (self.linker_dll, shared_option,
 entry_point))

If you are using Visual C++, please use the 2008 version. Python was
built with this version, and it’s apparently difficult to use 2010
because it links to another C or C++ runtime.

Common build options

You can build the module with the setup.py script (or
setup3k.py for Python 3). This section discusses some common
options that you may need or find useful.

--inplace means that the module will be dropped in the current
directory. I find this more practical, as it makes it easier to test
the module once built.

--compiler=mingw32 obviously means that MinGW [http://www.mingw.org] will be invoked
instead of the default compiler. This is needed when you want to use
GCC on Windows. This command will show you the list of compilers you
can specify: python setup.py build_ext --help-compiler. Visual
Studio is the default compiler and should work without using this
option.

In the end, the command will look something like this:

python setup.py build_ext --inplace --compiler=mingw32

Building without Cython

Warning

Github has removed the downloads feature, so I don’t plan to
package source releases anymore. Windows users can use the
installers, and it should be easier for other users to build the
module now that recent versions of Cython correctly build the
module out of the box.

If you download a source release at the download page [https://github.com/bastienleonard/pysfml-cython/downloads], you
don’t need to install Cython, since the release already contains the
files that Cython would generate.

Make sure that USE_CYTHON is set to False in setup.py (or
setup3k.py, if you’re building for Python 3). You can then build the
module by typing this command:

python setup.py build_ext

Building with Cython installed

Warning

With older versions of Cython, the binding won’t work correctly
when built straight from the Git repo. If you want to build from
the source, you’re encouraged to use the latest source release. See
Building without Cython. If you really want to build from
Git, you need to modify the generated sfml.cpp file. You need all
these declarations:

__PYX_EXTERN_C DL_EXPORT(PyObject) *wrap_time_instance(sf::Time *);
__PYX_EXTERN_C DL_EXPORT(PyObject) *wrap_render_target_instance(sf::RenderTarget *);
__PYX_EXTERN_C void set_error_message(char*);
__PYX_EXTERN_C DL_EXPORT(PyObject) *wrap_chunk_instance(sf::SoundStream::Chunk*, int);

I don’t know if it’s the same exact problem everywhere, but on my
system I get the first declaration and not the others. So you can
look for the wrap_time_instance() declaration, and copy-paste
the others after it.

This bug should be fixed in the next Cython release.

Warning

Several Ubuntu users reported that they can’t build the module
because the Cython package is currently outdated. One solution is
to install Cython manually [http://docs.cython.org/src/quickstart/install.html], for example
with easy_install cython.

If you downloaded the source straight from the Git repo or if you have
modified the source, you’ll need to install Cython to build a module
including the changes. Also, make sure that USE_CYTHON is set to
True in setup.py.

When you’ve done so, you can build the module by typing this command:

python setup.py build_ext

If you get an error related with DL_IMPORT, refer to the end of
the Building a Python 3 module section.

Building a Python 3 module

It’s possible to build a Python 3 module, but you may encounter a few
minor problems.

First of all, on my machine, the Cython class used in setup3k.py to
automate Cython invocation is only installed for Python 2. It’s
probably possible to install it for Python 3, but it’s not complicated
to invoke Cython manually:

cython --cplus sfml.pyx

The next step is to invoke the setup3k.py script to build the
module. Since we called Cython already, make sure that USE_CYTHON
is set to False in setup3k.py, then invoke this command:

python3 setup3k.py build_ext

(Note that you may have to type python instead of python3;
typically, GNU/Linux systems provide this as a way to call a specific
version of the interpreter, but I’m not sure that’s the case for all
of them as well as Windows.)

(Also note that on GNU/Linux, the generated file won’t be called
sfml.so but something like sfml.cpython-32mu.so. Apparently,
on Windows it’s still sfml.pyd.)

The second problem used to be that you had to use bytes instead of
Unicode e.g. when passing a filename or window title to SFML. This is
now gone, except possibly in methods that I forgot to fix; make sure
to report the issue if you encounter such a case. When you pass a
Unicode object to these methods, they now encode it in UTF-8 before
passing them to SFML. You can change the encoding by setting the
default_encoding variable at any time.

Finally, compilation may fail because the src/sfml.h file
generated by Cython uses the deprecated DL_IMPORT() macro. At the
root of the project, there is a patch.py script that will remove
the offending macros for you. The trick is that src/sfml.h will
not exist at first; the setup script will create it, then try to
compile it and fail. That’s when you need to use patch.py, and
build the module again.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

Tutorials

	pySFML basics
	Creating a window

	Video modes

	Main loop

	Event handling basics

	Drawing the image

	Real-time input handling

	Images and textures

	Learning pySFML from a C++ SFML background
	Naming convention

	Object initialization with class methods

	Properties

	Events

	Error handling

	Creating your own drawables

	Time

	“Missing” features

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

 	Tutorials

pySFML basics

Warning

The module has recently been renamed from sf to sfml, to be
more clear and avoid clashes. However, it’s easy to still use
sf as the namespace in your code; just write import sfml as
sf. This is the approach that we follow in this tutorial and in
the examples. The reference uses sfml though, since it’s the
“official” namespace.

Welcome to pySMFL’s official tuturial! You are going to learn how to
display an image and move it based on user input. But first, here is
the full listing:

import sfml as sf

def main():
 window = sf.RenderWindow(sf.VideoMode(640, 480),
 'Drawing an image with SFML')
 window.framerate_limit = 60
 running = True
 texture = sf.Texture.load_from_file('python-logo.png')
 sprite = sf.Sprite(texture)

 while running:
 for event in window.iter_events():
 if event.type == sf.Event.CLOSED:
 running = False

 if sf.Keyboard.is_key_pressed(sf.Keyboard.RIGHT):
 sprite.move(5, 0)
 elif sf.Keyboard.is_key_pressed(sf.Keyboard.LEFT):
 sprite.move(-5, 0)

 window.clear(sf.Color.WHITE)
 window.draw(sprite)
 window.display()

 window.close()

if __name__ == '__main__':
 main()

You can get the python-logo.png file here [https://github.com/bastienleonard/pysfml-cython/raw/master/examples/python-logo.png],
or use any other image file supported: bmp, dds, jpg, png, tga, or
psd.

Note

If you’re new to Python, you may find the last two lines
confusing. They’re not necessary to make the script run: if you
remove them as well as the def main(): line and adjust the
indentation accordingly, the program will still run fine. But it’s
a good practice to use this pattern in your scripts.

The main() function that we defined isn’t a “standard” function
that gets automatically called, like in C or C++. So we call the
function ourself if __name__ == __main__, i.e. if our file has
been launched by the user, rather than imported by some code. You
can find more information here:
http://stackoverflow.com/questions/419163/what-does-if-name-main-do

Creating a window

Windows in pySFML are created with the RenderWindow
class. This class provides some useful constructors to create directly
our window. The interesting one here is the following:

window = sf.RenderWindow(sf.VideoMode(640, 480), 'SFML Window')

Here we create a new variable named window that will represent our
new window. Let’s explain the parameters:

	The first parameter is a VideoMode, which represents the
chosen video mode for the window. Here, the size is 640x480 pixels,
with a depth of 32 bits per pixel. Note that the specified size will
be the internal area of the window, excluding the titlebar and the
borders.

	The second parameter is the window title.

If you want to create your window later, or recreate it with different
parameters, you can use its RenderWindow.create() method:

window.create(sf.VideoMode(640, 480), 'SFML Window');

The constructor and the RenderWindow.create() method also
accept two optional additionnal parameters: the first one to have more
control over the window’s style, and the second one to set more
advanced graphics options; we’ll come back to this one in another
tutorial, beginners usually don’t need to care about it. The style
parameter can be a combination of the sf.Style flags, which are
NONE, TITLEBAR, RESIZE, CLOSE and FULLSCREEN. The
default style is Style.RESIZE | Style.CLOSE.

This creates a fullscreen window
window.create(sf.VideoMode(800, 600), 'SFML Window', sf.Style.FULLSCREEN);

Video modes

When you create a VideoMode, you can choose the bits per
pixel with a third argument. If you don’t, it is set to 32, which is
what we do in our examples, since it’s probably the most common value.

In the previous examples, any video mode size works because we run in
windowed mode. But if we want to run in fullscreen mode, we have to
choose one of the allowed modes. The
VideoMode.get_fullscreen_modes() class method returns a list
of all the valid fullscreen modes. They are sorted from best to worst,
so sf.VideoMode.get_fullscreen_modes()[0] will always be the
highest-quality mode available:

window = sf.RenderWindow(sf.VideoMode.get_fullscreen_modes[0], 'SFML Window', sf.Style.FULLSCREEN)

If you are getting the video mode from the user, you should check its
validity before applying it. This is done with
VideoMode.is_valid():

mode = get_mode_from_somewhere()

if not mode.is_valid():
 # Error...

The current desktop mode can be obtained with the
VideoMode.get_desktop_mode() class method.

Main loop

Let’s write a skeleton of our game loop:

Setup code
window = sf.RenderWindow(sf.VideoMode(640, 480), 'SFML window')
...

while True:
 # Handle events
 # ...

 window.clear(sf.Color.WHITE)

 # Draw our stuff
 # ...

 window.display()

RenderWindow.clear() fills the window with the specified
color. (If you don’t pass any color, black will be used.) You can
create “custom” color objects with the Color constructor.
For example, if you wanted to a pink background you could write
window.clear(sf.Color(255, 192, 203)). The call to
RenderWindow.display() simply updates the content of the
window.

This code doesn’t look right currently, because we have a loop that
doesn’t really do anything: it just draws the same background over and
over. Don’t worry, it will make more sense once we will actually draw
stuff.

If you run this program and look at your process manager, you’ll see
that it is using 100% of one of your processor’s time. This isn’t
surprising, given the busy loop we wrote. A simple fix is to set the
RenderWindow.framerate_limit attribute:

window.framerate_limit = 60

This line tells SFML to ensure that the window isn’t updated more than
60 times per second. It should to go in the setup code.

Event handling basics

The most common way to handle events in pySFML is to use
RenderWindow.iter_events(). You can still use
RenderWindow.poll_event() like in C++ SFML, but it will just
make the code look a bit clumsy.

If you’re used to C++ SFML, you will need to change your habit: pySFML
events only have the attributes that make sense for this particular
event; there’s no equivalent to the C++ union.

You need to test the type attribute to know kind of event you’re
looking at. Here are the event types:

	sf.Event.CLOSED

	sf.Event.RESIZED

	sf.Event.LOST_FOCUS

	sf.Event.GAINED_FOCUS

	sf.Event.TEXT_ENTERED

	sf.Event.KEY_PRESSED

	sf.Event.KEY_RELEASED

	sf.Event.MOUSE_WHEEL_MOVED

	sf.Event.MOUSE_BUTTON_PRESSED

	sf.Event.MOUSE_BUTTON_RELEASED

	sf.Event.MOUSE_MOVED

	sf.Event.MOUSE_ENTERED

	sf.Event.MOUSE_LEFT

	sf.Event.JOYSTICK_BUTTON_PRESSED

	sf.Event.JOYSTICK_BUTTON_RELEASED

	sf.Event.JOYSTICK_MOVED

	sf.Event.JOYSTICK_CONNECTED

	sf.Event.JOYSTICK_DISCONNECTED

In our case, we just use the “closed” event to stop the program:

for event in window.iter_events():
 if event.type == sf.Event.CLOSED:
 running = False

Most event objects contain special attributes containing useful
values, but CLOSED doesn’t, it just tells you that the user want
to close your application. KEY_PRESSED is another common event
type. Events of this type contain several attributes, but the most
important one is code. It’s an integer that maps to one of the
constants in the Keyboard class.

For example, if we wanted to close the window when the user presses
the Escape key, our event loop could look like this:

while running:
 for event in window.iter_events():
 if event.type == sf.Event.CLOSED:
 running = False
 elif event.type == sf.Event.KEY_PRESSED:
 if event.code == sf.Keyboard.ESCAPE:
 running = False

See Event types reference for the list of all events and the
attributes they contain.

Note

In fullscreen mode, you can’t rely on the window manager’s controls
to send the CLOSED event, so it’s a good idea to set a shortcut
like we just did to make sure the user is able to close the
application.

Drawing the image

You will need to use at least two classes for displaying the image:
Texture and Sprite. It’s important to understand the
difference between these two:

	Textures contain the actual image that you want to display. They are
heavy objects, and you shouldn’t have the same image/texture loaded
more than once in memory. Textures objects can’t be displayed
directly; for example there’s no way to set the (x, y) position of a
texture. You need to use sprites for this purpose.

	Sprites are lightweight objects associated with a texture, either
with the constructor or the Sprite.texture attribute. They
have many visual properties that you can change, such as the (x, y)
position, the zoom or the rotation.

In practice, you might have several creatures displayed on screen, all
from the same image. The image would be loaded only once into memory,
and several sprite objects would be created. They would all have the
same texture property, but their position would be set to the
creature’s position on screen. They could also have a different
rotation or other effects, based on the creature’s state.

There are two main steps to displaying our image. First, we need to
load the image in the setup code and create the sprite:

texture = sf.Texture.load_from_file('python-logo.png')
sprite = sf.Sprite(texture)

Now, we can display the sprite in the game loop:

window.clear(sf.Color.WHITE)
window.draw(sprite)
window.display()

Real-time input handling

What if we want to do something as long as the user is pressing a
certain key? For example, we want to move our logo as long as the user
is pressing the right arrow key, or the left key. In that case, it’s
not enough to know that the user just pressed the key. We want to know
whether he is still holding it or not.

To achieve that, you would need to set a boolean to True as soon
as the user is pressing the key. When you get the “release” event for
that key, you set it back to False. And you read the value of that
boolean to know whether the right key is pressed or not.

As it turns out, SFML has this kind of feature built in. You can call
Keyboard.is_key_pressed() with the code the key as an argument;
it will return True if this key is currently pressed. The key
codes are class attributes in Keyboard: for example,
Keyboard.LEFT and Keyboard.RIGHT map to the left and
right arrow keys. Your event loop would then look something like this:

while running:
 for event in window.iter_events():
 if event.type == sf.Event.CLOSED:
 running = False

 if sf.Keyboard.is_key_pressed(sf.Keyboard.RIGHT):
 sprite.move(5, 0)
 elif sf.Keyboard.is_key_pressed(sf.Keyboard.LEFT):
 sprite.move(-5, 0)

The Mouse class provides a similar class method,
Mouse.is_button_pressed(), for when you need to know whether a
mouse button is pressed.

Images and textures

Another class may be useful for displaying images: Image. The
difference between a texture and an image is that a texture gets
loaded into video memory and can be efficiently displayed. If you want
to display an image, you need to create a texture and call
Texture.load_from_image(), and then display the texture. On the
other hand, you can access and modify the pixels of an image as
needed.

The bottom line is: use textures by default, and use images only if
it’s needed.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

 	Tutorials

Learning pySFML from a C++ SFML background

Naming convention

This module follows the style guide for Python code [http://www.python.org/dev/peps/pep-0008/] as much as possible. To
give you an idea, here is a list of attribute naming examples:

	Classes: RenderWindow, Texture.

	Methods and attributes: default_view, load_from_file().

	Constants: CLOSED, KEY_PRESSED, BLEND_ALPHA.

Namespaces normally follow the same nesting as in C++,
e.g. sf::Event::Closed becomes sfml.Event.CLOSED. Events
are an exception, see Events.

Object initialization with class methods

C++ SFML has a general pattern for creating objects when their
initialization may fail:

	Allocate an “empty” object.

	Call a method that will initialize the object, e.g. loadFromFile().

	If this method returned false, handle the error.

In pySFML, you typically just have to call a class method,
e.g. Texture.load_from_file(). If you want to handle possible
errors at this point, you write an except block (see
Error handling). Otherwise, the exception will propagate
to the next handler.

In some cases, class methods are the only way to initialize an
object. In that case, the constructor will raise
NotImplementedError if you call it. In other cases, the
constructors peform some kind of default initialization, while class
methods do more specific work.

Properties

Generally speaking, set*()/get*() methods are replaced by
properties. For example,
RenderWindow.getSize()/RenderWindow.setSize() becomes a
RenderWindow.size property which behaves like a normal
attribute. I tend to create properties when the user can safely ignore
that he’s not dealing with an actual attribute, i.e. when the property
doesn’t do anything non-obvious and is fast to execute.

In some cases, it’s not that straightforward. Some properties only
have a getter or a setter, even though they should have both (for
example, RenderWindow.key_repeat_enabled). The reason is that
C++ SFML doesn’t provide the missing set/get method. This has been
pointed out to SFML’s author, who is going to fix it someday. I could
fix it myself, but it would require to add quite a lot of boilerplate
that I will need to remove when SFML gets the missing methods. The
reason why these methods are missing in the first place is that’s
they’re not very useful, so I consider that to be a decent trade-off.

I tend to use a method instead of an attribute when I feel like a
get*() method involves some kind of computation. For example,
View.get_inverse_transform() is a method instead of a property
because I somehow feel like it involves something heavier than simply
looking up an attribute. Admittedly, this is subjective, and it’s
difficult to be consistent with this kind of choice as well.

Events

pySFML objects only feature the attributes that they actually
need. For example, event.key.code in C++ becomes event.code.
Accessing an attribute that doesn’t make sense for this event will
raise an exception, because the object event doesn’t have it at all.
As you can see in the Event types reference, there is some
overlap, so theoretically you could confuse a MOUSE_WHEEL_MOVED
event for a MOUSE_MOVED event, access the x or y
attribute, without raising any exception.

Instead of using RenderWindow.poll_event(), events are usually
retrieved in for loop with RenderWindow.iter_event():

for event in window.iter_events():
 if event.type == sfml.Event.CLOSED:
 ...

Error handling

Unlike C++ SFML, there are no boolean return values to indicate
success or failure. Anytime SFML returns False, typically, when a
file can’t be opened, pySFML raises PySFMLException. Please
read the description of this exception for more information.

I’d like to add more specific exceptions, but since SFML only returns
True or False, I can’t tell if the source of the failure is a
non existant file, an invalid file content, an internal library
failure, or anything else. SFML’s author wants to improve error
handling in a future release. At this point, more specific exceptions
will probably be possible to implement.

Creating your own drawables

Unlike in C++ SFML, you don’t have to inherit a Drawable
class. This is covered in Creating your own
drawables.

Time

Time values are created with Time‘s constructor using keyword
arguments, instead of calling a global function. For example,
sf::milliseconds(200) becomes sfml.Time(milliseconds=200).

“Missing” features

Vector2f has been ported, but tuples are used instead of
Vector2i and Vector3f. These classes are used so sparsely that
it doesn’t seem worth porting them. Note that you can pass tuples
instead of Vector2f objects.

The network and threading parts of SFML aren’t ported in this module,
since similar features are already provided by the standard library.
For UDP and TCP connections, you should look into the socket
module. threading is the general, high-level module for threading
stuff. For URL retrieval, urllib and urllib2 are provided.

You may also want to check out non standard libraries such as Twisted [http://twistedmatrix.com/] or requests [http://docs.python-requests.org/en/latest/index.html].

Most streaming features are also currently missing.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

API reference

This reference is splitted in sections for readability only.
Every class is available in the same sfml namespace.

	Exceptions

	System

	Graphics
	Misc

	Windowing

	Drawing

	Text

	Events
	Event types reference

	Audio

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

 	API reference

Exceptions

	
exception sfml.PySFMLException

	Raised when any important error is encountered. Typically, file loading
methods such as Texture.load_from_file() return the new object if
everything went well, and raise this exception otherwise.

A simple example of error handling:

try:
 texture = sf.Texture.load_from_file('texture.png')
except sf.PySFMLException as e:
 pass # Handle error: pring message, log it, ...

In C++:

sf::Texture texture;

if (!texture.LoadFromFile("texture.png"))
{
 // Handle error
}

Please understand that you don’t have to handle exceptions every time you
call a method that might throw one; you can handle them at a higher level or
even not handle them at all, if the default behavior of stopping the program
and printing a traceback is OK. This is an advantage compared to C++ SFML,
where ignoring return statuses means that your program will try to keep
running normally if an important error is raised.

	
message

	A string describing the error. This is the same message that
C++ SFML would write in the console.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

 	API reference

System

	
sfml.default_encoding

	Currently, this encoding is used when the user passes a Unicode
object to method that will call a SFML method which only supports
std::string argument. The user-supplised Unicode object will be
encoded with this encoding and the resulting bytes will be passed
to SFML. This is mostly for Python 3 users, so they don’t have to
use byte strings all the time. Here is the list of valid encodings:
http://docs.python.org/py3k/library/codecs.html#standard-encodings

	
class sfml.Clock

	Utility class that measures the elapsed time.

Its provides the most precise time that the underlying OS can
achieve (generally microseconds or nanoseconds). It also ensures
monotonicity, which means that the returned time can never go
backward, even if the system time is changed.

Usage example:

clock = sfml.Clock()
...
time1 = clock.elapsed_time
...
time2 = clock.restart()

The Time object returned by the clock can then be
converted to a number of seconds, milliseconds or even
microseconds.

	
elapsed_time

	A Time object containing the time elapsed since the
last call to restart(), or the construction of the
instance if restart() has not been called yet.

	
restart()

	Restart the clock, and return a Time object containing
the elapsed time since the clock started.

	
class sfml.InputStream

	This abstract class allows users to define their own file-like
input sources from which SFML can load resources.

SFML resource classes like Texture and
SoundBuffer provide loadFromFile and loadFromMemory class
methods which read data from conventional sources. However, if you
have data coming from a different source (over a network, embedded,
encrypted, compressed, etc) you can derive your own class from
InputStream and load SFML resources with their
loadFromStream function.

Warning

Exceptions that occur in the implemented methods won’t be
propagated, but printed on sys.stderr (the console, by
default). This is because of concerns regarding multithreading
and exception propagation. Please keep your methods as simple as
possible, and if they don’t work, make sure you read the
console.

Usage example:

class ExampleStream(sfml.InputStream):
 def __init__(self, filename):
 sfml.InputStream.__init__(self)
 self.filename = filename
 self.file = open(filename, 'rb')
 self.file.seek(0, 2)
 self.size = self.file.tell()
 self.file.seek(0)

 def get_size(self):
 print('{0}: get_size()'.format(self.filename))
 return self.size

 def read(self, size):
 print('{0}: read({1})'.format(self.filename, size))

 return self.file.read(size)

 def seek(self, position):
 print('{0}: seek({1})'.format(self.filename, position))
 self.file.seek(position)

 return self.tell()

 def tell(self):
 print('{0}: tell()'.format(self.filename))

 return self.file.tell()

 def close(self):
 self.file.close()

Now you can load textures...
texture_stream = ExampleStream(some_path)
texture = sfml.Texture.load_from_stream(texture_stream)

Music...
music_stream = ExampleStream('music.ogg')
music = sfml.Music.open_from_stream(music_stream)
music.play()

Etc.

	
get_size()

	Return the number of bytes available in the stream, or -1 on
error.

	
read(int size)

	
	size is the desired number of bytes to read. The method should

	return a string in Python 2, or a bytes object in Python 3. If
needed, its length can be smaller than size.

	
seek(int position)

	Change the current position to position, from the beginning of
the streal. This method has to return the actual position sought
to, or -1 on error.

	
tell()

	Return the current reading position on the stream, or -1 on
error.

	
class sfml.Time(seconds=-1.0, milliseconds=-1, microseconds=-1)

	Instead of forcing the user to use a specific time units, SFML uses
this class to encapsulate time values. The user can get an actual
time value by using the following methods: as_seconds(),
as_milliseconds() and as_microseconds(). You can also
create your own time objects by calling the constructor with one
keyword argument.

Using one keyword argument is equivalent to calling the
corresponding function. For example, sfml.seconds(10) ==
sfml.Time(seconds=10).

This class provides the following special methods:

	Comparison operators: ==, !=, <, >, <=, >=.

	Arithmetic operators: +, -, *, /, unary -.

	str() returns a representation of the number of seconds.

	
ZERO

	Predefind “zero” time value (class attribute).

	
as_seconds()

	Return a float containing the number of seconds for this time object.

	
as_milliseconds()

	Return an int containing the number of milliseconds for this time
object.

	
as_microseconds()

	Return an int containing the number of microseconds for this time
object.

	
copy()

	Return a new Time object with the same value as self.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

 	API reference

Graphics

	Misc
	Blend modes

	Primitive types

	Basic classes

	Windowing

	Drawing
	Shapes

	Image dislay

	Text

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

 	API reference

 	Graphics

Misc

Blend modes

	
sfml.BLEND_ADD

	Pixel = Source + Dest.

	
sfml.BLEND_ALPHA

	Pixel = Source * Source.a + Dest * (1 - Source.a).

	
sfml.BLEND_MULTIPLY

	Pixel = Source * Dest.

	
sfml.BLEND_NONE

	Pixel = Source.

Primitive types

	
sfml.POINTS

	List of individual points.

	
sfml.LINES

	List of individual lines.

	
sfml.LINES_STRIP

	List of connected lines, a point uses the previous point to form a line.

	
sfml.TRIANGLES

	List of individual triangles.

	
sfml.TRIANGLES_FAN

	List of connected triangles, a point uses the common center and the
previous point to form a triangle.

	
sfml.TRIANGLES_STIP

	List of connected triangles, a point uses the two previous points
to form a triangle.

	
sfml.QUADS

	List of individual quads.

Basic classes

	
class sfml.Color(int r, int g, int b[, int a=255])

	Represents a color of 4 components:

	red,

	green,

	blue,

	alpha (opacity).

Each component is a public member, an unsigned integer in the range
[0, 255]. Thus, colors can be constructed and manipulated very
easily:

color = sfml.Color(255, 0, 0) # red; you can also use Color.RED
color.r = 0 # make it black
color.b = 128 # make it dark blue

The fourth component of colors, named “alpha”, represents the
opacity of the color. A color with an alpha value of 255 will be
fully opaque, while an alpha value of 0 will make a color fully
transparent, whatever the value of the other components is.

This class provides the following special methods:

	Comparison operators: == and !=.

	Arithmetic operators: + and *.

The following colors are available as static attibutes, e.g. you
can use Color.WHITE to obtain a reference to the white color:

	
BLACK

	

	
BLUE

	

	
CYAN

	

	
GREEN

	

	
MAGENTA

	

	
RED

	

	
TRANSPARENT

	Transparent black color, i.e. this is equal to Color(0, 0, 0, 0).

	
WHITE

	

	
YELLOW

	

	
r

	Red component.

	
g

	Green component.

	
b

	Blue component.

	
a

	Alpha (opacity) component.

	
copy()

	Return a new Color with the same value as self.

	
class sfml.Vector2f(float x=0.0; float y=0.0)

	You don’t have to use this class; everywhere you can pass a
Vector2f, you should be able to pass a tuple as
well. However, it can be more practical to use it, as it overrides
arithmetic and comparison operators, is mutable and requires that
you use the x and y members instead of indexing.

This class provides the following special methods:

	Comparison operators: == and !=.

	
x

	x coordinate for this vector.

	
y

	y coordinate for this vector.

	
copy()

	Return a new Vector2f with x and y set to the
value of self.

	
class sfml.IntRect(int left=0, int top=0, int width=0, int height=0)

	A rectangle is defined by its top-left corner and its size.

To keep things simple, IntRect doesn’t define functions to
emulate the properties that are not directly members (such as
right, bottom, center, etc.), instead it only provides intersection
functions.

IntRect uses the usual rules for its boundaries:

	The left and top edges are included in the rectangle’s area.

	The right (left + width) and bottom (top + height) edges are
excluded from the rectangle’s area.

This means that sfml.IntRect(0, 0, 1, 1) and sfml.IntRect(1,
1, 1, 1) don’t intersect.

Usage example:

Define a rectangle, located at (0, 0) with a size of 20x5
r1 = sfml.IntRect(0, 0, 20, 5)

Define another rectangle, located at (4, 2) with a size of 18x10
r2 = sfml.IntRect(4, 2, 18, 10)

Test intersections with the point (3, 1)
b1 = r1.contains(3, 1) # True
b2 = r2.contains(3, 1) # False

Test the intersection between r1 and r2
result = sfml.IntRect()
b3 = r1.intersects(r2, result) # True
result == (4, 2, 16, 3)

Note

You don’t have to use this class; everywhere you can pass a
IntRect, you should be able to pass a tuple as
well. However, it can be more practical to use it, as it
provides useful methods and is mutable.

This class provides the following special methods:

	Comparison operators: == and !=.

	
left

	Left coordinate of the rectangle.

	
top

	Top coordinate of the rectangle.

	
width

	Width of the rectangle.

	
height

	Height of the rectangle.

	
contains(int x, int y)

	Return whether or not the rectangle contains the point (x, y).

	
copy()

	Return a new IntRect object with the same value as self.

	
intersects(IntRect rect[, IntRect intersection])

	Return whether or not the two rectangles intersect. If
intersection is provided, it will be set to the intersection
area.

	
class sfml.FloatRect(float left=0, float top=0, float width=0, float height=0)

	A rectangle is defined by its top-left corner and its size.

To keep things simple, FloatRect doesn’t define functions
to emulate the properties that are not directly members (such as
right, bottom, center, etc.), instead it only provides intersection
functions.

FloatRect uses the usual rules for its boundaries:

	The left and top edges are included in the rectangle’s area.

	The right (left + width) and bottom (top + height) edges are
excluded from the rectangle’s area.

This means that sfml.FloatRect(0, 0, 1, 1) and sfml.FloatRect(1,
1, 1, 1) don’t intersect.

See IntRect for an example.

Note

You don’t have to use this class; everywhere you can pass a
FloatRect, you should be able to pass a tuple as
well. However, it can be more practical to use it, as it
provides useful methods and is mutable.

This class provides the following special methods:

	Comparison operators: == and !=.

	
left

	The left coordinate of the rectangle.

	
top

	The top coordinate of the rectangle.

	
width

	The width of the rectangle.

	
height

	The height of the rectangle.

	
contains(int x, int y)

	Return whether or not the rectangle contains the point (x, y).

	
copy()

	Return a new FloatRect object with the same value as self.

	
intersects(FloatRect rect[, FloatRect intersection])

	Return whether or not the two rectangles intersect. If
intersection is provided, it will be set to the intersection
area.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

 	API reference

 	Graphics

Windowing

	
class sfml.RenderWindow([VideoMode mode, title[, style[, ContextSettings settings]]])

	This class inherits RenderTarget.

This class represents an OS window that can be painted using the other
graphics-related classes, such as Sprite and
Text.

The constructor creates the window with the size and pixel depth
defined in mode. If specified, style must be a value from the
Style class. settings is an optional
ContextSettings specifying advanced OpenGL context
settings such as antialiasing, depth-buffer bits, etc. You
shouldn’t need to use it for a regular usage.

	
active

	Write-only. If true, the window is activated as the current
target for OpenGL rendering. A window is active only on the
current thread, if you want to make it active on another thread
you have to deactivate it on the previous thread first if it was
active. Only one window can be active on a thread at a time,
thus the window previously active (if any) automatically gets
deactivated. If an error occurs, PySFMLException is
raised.

	
framerate_limit

	Write-only. If set, the window will use a small delay after each
call to display() to ensure that the current frame
lasted long enough to match the framerate limit. SFML will try
to match the given limit as much as it can, but since the
precision depends on the underlying OS, the results may be a
little unprecise as well (for example, you can get 65 FPS when
requesting 60).

	
height

	The height of the rendering region of the window. The height
doesn’t include the titlebar and borders of the window. Unlike
RenderTarget.height, this property can be modified.

	
joystick_threshold

	Write-only. The joystick threshold is the value below which no
Event.JOYSTICK_MOVED event will be generated. Default
value: 0.1.

	
key_repeat_enabled

	Write-only. If key repeat is enabled, you will receive repeated
Event.KEY_PRESSED events while keeping a key pressed. If
it is disabled, you will only get a single event when the key is
pressed. Default value: True.

	
mouse_cursor_visible

	Write-only. Whether or not the mouse cursor is shown. Default
value: True.

	
open

	Read-only. Whether or not the window exists. Note that a hidden
window (visible = False) is open (so this attribute would be
True).

	
position

	The position of the window on screen. This attribute only works
for top-level windows (i.e. it will be ignored for windows
created from the system_handle of a child
window/control).

	
settings

	Read-only. The settings of the OpenGL context of the
window. Note that these settings may be different from what was
passed when creating the window, if one or more settings were
not supported. In this case, SFML chooses the closest match.

	
size

	The size of the rendering region of the window. The size doesn’t
include the titlebar and borders of the window. Unlike
RenderTarget.size, this property can be modified.

	
system_handle

	Return the system handle as a long (or int on Python 3). Windows
and Mac users will probably need to convert this to another type
suitable for their system’s API. You shouldn’t need to use this,
unless you have very specific stuff to implement that pySFML
doesn’t support, or implement a temporary workaround until a bug
is fixed. If you need to use it, please contact me and show me
your use case to see if I can make the API more user-friendly.

	
title

	Write-only. The title of the window.

	
vertical_sync_enabled

	Write-only. Whether or not the vertical synchronization is
enabled. Activating vertical synchronization will limit the
number of frames displayed to the refresh rate of the
monitor. This can avoid some visual artifacts, and limit the
framerate to a good value (but not constant across different
computers). Default value: False.

	
visible

	Write-only. Whether or not the window is shown. Default value:
True.

	
width

	The width of the rendering region of the window. The width
doesn’t include the titlebar and borders of the window. Unlike
RenderTarget.width, this property can be modified.

	
classmethod from_window_handle(long window_handle[, ContextSettings settings])

	Construct the window from an existing control. Use this class
method if you want to create an SFML rendering area into an
already existing control. The fourth parameter is an optional
structure specifying advanced OpenGL context settings such as
antialiasing, depth-buffer bits, etc. You shouldn’t care about
these parameters for regular usage.

Equivalent to this C++ constructor:

RenderWindow(WindowHandle, ContextSettings=ContextSettings())

	
close()

	Close the window and destroy all the attached resources. After
calling this function, the instance remains valid and you can
call create() to recreate the window. All other methods
such as poll_event() or display() will still work
(i.e. you don’t have to test open every time), and will
have no effect on closed windows.

	
create(VideoMode mode, title[, int style[, ContextSettings settings]])

	Create (or recreate) the window. If the window was already
created, it closes it first. If style contains
Style.FULLSCREEN, then mode must be a valid video
mode.

	
display()

	Display on screen what has been rendered to the window so
far. This function is typically called after all the OpenGL
rendering has been done for the current frame, in order to show
it on screen.

	
iter_events()

	Return an iterator which yields the current pending events. Example:

for event in window.iter_events():
 if event.type == sfml.Event.CLOSED:
 pass # ...

The traditional poll_event() method can be used to
achieve the same effect, but using this iterator makes your life
easier and is the recommended way to handle events.

	
poll_event()

	Pop the event on top of events stack, if any, and return
it. This method is not blocking: if there’s no pending event
then it will return None and leave the event
unmodified. Note that more than one event may be present in the
events stack, thus you should always call this function in a
loop to make sure that you process every pending event.

event = sfml.Event()

while window.poll_event(event):
 pass # process event...

Warning

In most cases, you should use iter_events() instead, as
it takes care of creating the event objects for you.

	
set_icon(int width, int height, str pixels)

	Change the window’s icon. pixels must be a string in Python 2,
or a bytes object in Python 3. It should contain width x height
pixels in 32-bits RGBA format. The OS default icon is used by
default.

	
wait_event()

	Wait for an event and return it. This method is blocking: if
there’s no pending event, it will wait until an event is
received. After this function returns (and no error occured),
the event object is always valid and filled properly. This
method is typically used when you have a thread that is
dedicated to events handling: you want to make this thread sleep
as long as no new event is received. If an error occurs,
PySFMLException is raised.

event = sfml.Event()

if window.wait_event(event):
 pass # process event...

	
class sfml.Style

	This window contains the available window styles, as class
attributes. See RenderWindow.

Calling the constructor will raise NotImplementedError.

	
CLOSE

	Titlebar + close button.

	
DEFAULT

	Default window style.

	
FULLSCREEN

	Fullscreen mode (this flag and all others are mutually exclusive).

	
NONE

	No border/title bar (this flag and all others are mutually
exclusive).

	
RESIZE

	Titlebar + resizable border + maximize button.

	
TITLEBAR

	Title bar + fixed border.

	
class sfml.ContextSettings(int depth=24, int stencil=8, int antialiasing=0, int major=2, int minor=0)

	Class defining the settings of the OpenGL context attached to a
window. ContextSettings allows to define several advanced
settings of the OpenGL context attached to a window.

All these settings have no impact on the regular SFML rendering
(graphics module), except the anti-aliasing level, so you may need
to use this structure only if you’re using SFML as a windowing
system for custom OpenGL rendering.

Please note that these values are only a hint. No failure will be
reported if one or more of these values are not supported by the
system; instead, SFML will try to find the closest valid match. You
can then retrieve the settings that the window actually used to
create its context, with RenderWindow.settings.

	
antialiasing_level

	Number of multisampling levels for antialiasing.

	
depth_bits

	Bits of the depth buffer.

	
major_version

	Major number of the context version to create. Only versions
greater or equal to 3.0 are relevant; versions less than 3.0 are
all handled the same way (i.e. you can use any version < 3.0 if
you don’t want an OpenGL 3 context).

	
minor_version

	Minor number of the context version to create. Only versions
greater or equal to 3.0 are relevant; versions less than 3.0 are
all handled the same way (i.e. you can use any version < 3.0 if
you don’t want an OpenGL 3 context).

	
stencil_bits

	Bits of the stencil buffer.

	
class sfml.VideoMode([width, height, bits_per_pixel=32])

	A video mode is defined by a width and a height (in pixels) and a
depth (in bits per pixel). Video modes are used to setup windows
(RenderWindow) at creation time.

The main usage of video modes is for fullscreen mode: you have to
use one of the valid video modes allowed by the OS (which are
defined by what the monitor and the graphics card support),
otherwise your window creation will just fail.

VideoMode provides a static method for retrieving the list of all
the video modes supported by the system:
get_fullscreen_modes.

A custom video mode can also be checked directly for fullscreen
compatibility with its is_valid() method.

Additionnally, VideoMode provides a static method to get the mode
currently used by the desktop: get_desktop_mode(). This
allows to build windows with the same size or pixel depth as the
current resolution.

Usage example:

Display the list of all the video modes available for fullscreen
modes = sfml.VideoMode.get_fullscreen_modes()

for mode in modes:
 print(mode)

Create a window with the same pixel depth as the desktop
desktop_mode = sfml.VideoMode.get_desktop_mode()
window.create(sfml.VideoMode(1024, 768, desktop_mode.bits_per_pixel),
 'SFML window')

This class overrides the following special methods:

	Comparison operators (==, !=, <, >, <= and
>=).

	str(mode) returns a description of the mode in a
widthxheightxbpp format.

	repr(mode) returns a string in a VideoMode(width, height,
bpp) format.

	
width

	Video mode width, in pixels.

	
height

	Video mode height, in pixels.

	
bits_per_pixel

	Video mode depth, in bits per pixel.

	
classmethod get_desktop_mode()

	Return the current desktop mode.

	
classmethod get_fullscreen_modes()

	Return a list of all the video modes supported in fullscreen
mode. It is sorted from best to worst, so that the first element
will always give the best mode (higher width, height and
bits-per-pixel).

	
is_valid()

	Return a boolean telling whether the mode is valid or not. This
is only relevant in fullscreen mode; in other cases all modes
are valid.

	
class sfml.View

	The constructor creates a default view of (0, 0, 1000, 1000).

2D camera that defines what region is shown on screen. This is a
very powerful concept: you can scroll, rotate or zoom the entire
scene without altering the way that your drawable objects are
drawn.

A view is composed of a source rectangle, which defines what part
of the 2D scene is shown, and a target viewport, which defines
where the contents of the source rectangle will be displayed on the
render target (window or texture).

The viewport allows to map the scene to a custom part of the render
target, and can be used for split-screen or for displaying a
minimap, for example. If the source rectangle has not the same size
as the viewport, its contents will be stretched to fit in.

To apply a view, you have to assign it to the render target. Then,
every objects drawn in this render target will be affected by the
view until you use another view.

Usage example:

window = sfml.RenderWindow(sfml.VideoMode(640, 480), 'Title')

Initialize the view with a rectangle located at (100, 100) and
a size of 400x200
view = sfml.View.from_rect(sfml.FloatRect(100, 100, 400, 200))

Rotate it by 45 degrees
view.rotate(45)

Set its target viewport to be half of the window
view.view_port = sfml.FloatRect(0.0, 0.0, 0.5, 1.0)

Apply it
window.view = view

Render stuff
window.draw(some_sprite)

Set the default view back
window.view = window.default_view

Render stuff not affected by the view
window.draw(some_text)

	
center

	The center of the view, as a tuple. The value can also be set
from a Vector2f object.

	
height

	Shortcut for self.size[1].

	
rotation

	The orientation of the view, as a float. Default value: 0.0 degree.

	
size

	The size of the view, as a tuple. The value can also be set from
a Vector2f object.

	
viewport

	The target viewport. The viewport is the rectangle into which
the contents of the view are displayed, expressed as a factor
(between 0 and 1) of the size of the RenderTarget to
which the view is applied. For example, a view which takes the
left side of the target would be defined with View.viewport =
sfml.FloatRect(0, 0, 0.5, 1). By default, a view has a
viewport which covers the entire target.

	
width

	Shortcut for self.size[0].

	
classmethod from_center_and_size(center, size)

	Return a new view created from a center and a size. center
and size can be either tuples or Vector2f.

	
classmethod from_rect(rect)

	Return a new view created from a rectangle. rect can be a
tuple or a FloatRect.

	
move(float x, float y)

	Move the view relatively to its current position.

	
reset(rect)

	Reset the view to the given rectangle. rect can be a tuple or
a FloatRect. Note that this function resets the
rotation angle to 0.

	
rotate(float angle)

	Rotate the view relatively to its current orientation.

	
zoom(float factor)

	Resize the view rectangle relatively to its current
size. Resizing the view simulates a zoom, as the zone displayed
on screen grows or shrinks. factor is a multiplier:

	1 keeps the size unchanged.

	> 1 makes the view bigger (objects appear smaller).

	< 1 makes the view smaller (objects appear bigger).

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

 	API reference

 	Graphics

Drawing

Note

Creating your own drawables

A drawable is an object that can be drawn directly to render
target, e.g. you can write window.draw(a_drawable).

In the past, creating a drawable involved inheriting the Drawable
class and overriding its render() method. With the new graphics API,
you only have to define a draw() method that takes two parameters:

def draw(self, target, states):
 target.draw(self.logo)
 target.draw(self.princess)

target and states are RenderTarget and RenderStates
objects, respectively. See examples/customdrawable.py for a working
example, which also shows how you can use the low-level API.

The Transformable class now contains the operations that
can be appied to a drawable. Most drawable (i.e. objects that can
be drawn on a target) are transformable as well.

C++ documentation:

	http://www.sfml-dev.org/documentation/2.0/classsf_1_1Drawable.php

	http://www.sfml-dev.org/documentation/2.0/classsf_1_1Transformable.php

	
class sfml.RenderStates(blend_mode=-1, shader=None, texture=None, transform=None)

	The constructor first creates a default RenderStates object, then
sets its attributes with respect to the provided
arguments. Constructing a default set of render states is
equivalent to using RenderStates.DEFAULT. The default set
defines

	the BLEND_ALPHA blend mode,

	the Transform.IDENTITY transform,

	no texture (None),

	no shader (None).

Contains the states used for drawing to a
RenderTarget. There are four global states that can be
applied to the drawn objects:

	The blend mode: how pixels of the object are blended with the
background.

	The transform: how the object is positioned/rotated/scaled.

	The texture: which image is mapped to the object.

	The shader: which custom effect is applied to the object.

High-level objects such as sprites or text force some of these
states when they are drawn. For example, a sprite will set its own
texture, so that you don’t have to care about it when drawing the
sprite.

The transform is a special case: sprites, texts and shapes (and
it’s a good idea to do it with your own drawable classes too)
combine their transform with the one that is passed in the
RenderStates structure. So that you can use a “global” transform on
top of each object’s transform.

Most objects, especially high-level drawables, can be drawn
directly without defining render states explicitely — the default
set of states is ok in most cases:

window.draw(sprite)

If you just want to specify a shader, you can pass it directly to
the RenderTarget.draw() method:

window.draw(sprite, shader)

Note that unlike in C++ SFML, this only works for shaders and not
for other render states. This is because adding other possibilities
means writing a lot of boilerplate code in the binding, and shader
seemed to be most used state when writing this method.

When you’re inside the draw method of a drawable object, you can
either pass the render states unmodified, or change some of
them. For example, a transformable object will combine the current
transform with its own transform. A sprite will set its
texture. Etc.

	
DEFAULT

	A RenderStates object with the default values, as a class
attribute.

	
blend_mode

	See Blend modes for a list of the valid values.

	
shader

	A Shader object.

	
texture

	A Texture object.

	
transform

	A Transform object.

	
class sfml.RenderTarget

	Base class for RenderWindow and RenderTexture. It
is abstract; the constructor will raise NotImplementedError if
you call it.

RenderTarget defines the common behaviour of all the 2D
render targets. It makes it possible to draw 2D entities like
sprites, shapes, text without using any OpenGL command directly.

A RenderTarget is also able to use views (View),
which are some kind of 2D cameras. With views you can globally
scroll, rotate or zoom everything that is drawn, without having to
transform every single entity.

On top of that, render targets are still able to render direct
OpenGL stuff. It is even possible to mix together OpenGL calls and
regular SFML drawing commands. When doing so, make sure that OpenGL
states are not messed up by calling the
push_gl_states()/pop_gl_states() methods.

	
default_view

	Read-only. The default view has the initial size of the render
target, and never changes after the target has been created.

	
height

	Read-only. The height of the rendering region of the target.

	
size

	Read-only. The size of the rendering region of the target, as a
tuple.

	
view

	The view is like a 2D camera, it controls which part of the 2D
scene is visible, and how it is viewed in the render-target. The
new view will affect everything that is drawn, until another
view is set. The render target keeps its own copy of the view
object, so it is not necessary to keep the original one alive
after calling this function. To restore the original view of the
target, you can pass the result of default_view to this
function.

	
width

	Read-only. The width of the rendering region of the target.

	
clear([color])

	Clear the entire target with a single color. This function is
usually called once every frame, to clear the previous contents
of the target. The default is black.

	
map_coords_to_pixel(int x, int y[, view=None])

	Convert a point from view coordinates to target coordinates, as
a tuple of ints. This method finds the pixel of the render
target that matches the given 2D point. In other words, it goes
through the same process as the graphics card, to compute the
final position of a rendered point.

Initially, both coordinate systems (world units and target
pixels) match perfectly. But if you define a custom view or
resize your render-target, this assertion is not true anymore,
ie. a point located at (150, 75) in your 2D world may map to the
pixel (10, 50) of your render-target – if the view is
translated by (140, 25).

When the view argument isn’t provided, the current view of the
render target is used.

	
map_pixel_to_coords(int x, int y[, view=None])

	Convert a point from target coordinates to view coordinates, as
a tuple of floats. This is typically used when the user clicked
on a pixel and you want to know the corresponding world
coordinates.

Initially, a unit of the 2D world matches a pixel of the render
target. But if you define a custom view, this isn’t true
anymore, e.g. a point located at (10, 50) in your render target
(for example a window) may map to the point (150, 75) in your 2D
world — for example if the view is translated by (140,
25). For render windows, this method is typically used to find
which point (or object) is located below the mouse cursor.

When the view argument isn’t provided, the current view of the
render target is used.

	
draw(drawable, ...)

	drawable may be:

	A built-in drawable, such as Sprite or Text,
or a user-made drawable (see Creating your own drawables). You can pass a second
argument of type Shader or
RenderStates. Example:

window.draw(sprite, shader)

	A list or a tuple of Vertex objects. You must pass a
primitive type as a second argument,
and can pass a Shader or RenderStates as a
third argument. Example:

window.draw(vertices, sfml.QUADS, shader)

See examples/vertices.py for a working example.

	
get_viewport(view)

	Return the viewport of a view applied to this render target, as
an IntRect. The viewport is defined in the view as a
ratio, this method simply applies this ratio to the current
dimensions of the render target to calculate the pixels
rectangle that the viewport actually covers in the target.

	
pop_gl_states()

	Restore the previously saved OpenGL render states and matrices.
See push_gl_states().

	
push_gl_states()

	Save the current OpenGL render states and matrices. This method
can be used when you mix SFML drawing and direct OpenGL
rendering. Combined with pop_gl_states(), it ensures that:

	SFML’s internal states are not messed up by your OpenGL code.

	Your OpenGL states are not modified by a call to a SFML
method.

More specifically, it must be used around code that calls
draw() methods. Example:

OpenGL code here...
window.push_gl_states()
window.draw(...)
window.draw(...)
window.pop_gl_states()
OpenGL code here...

Note that this method is quite expensive: it saves all the possible
OpenGL states and matrices, even the ones you don’t care
about. Therefore it should be used wisely. It is provided for
convenience, but the best results will be achieved if you handle
OpenGL states yourself (because you know which states have really
changed, and need to be saved and restored). Take a look at the
reset_gl_states() method if you do so.

	
reset_gl_states()

	Reset the internal OpenGL states so that the target is ready for
drawing. This function can be used when you mix SFML drawing and
direct OpenGL rendering, if you choose not to use
push_gl_states()/pop_gl_states(). It ensures that
all OpenGL states needed by SFML are set, so that subsequent
draw() calls will work as expected.

Example:

OpenGL code here...
glPushAttrib(...)
window.reset_gl_states()
window.draw(...)
window.draw(...)
glPopAttrib(...)
OpenGL code here...

	
class sfml.RenderTexture(int width, int height[, bool depth=False])

	This class inherits RenderTarget.

Target for off-screen 2D rendering into an
texture. RenderTexture is the little brother of
RenderWindow.

It implements the same 2D drawing and OpenGL-related functions (see
their base class RenderTarget for more details), the
difference is that the result is stored in an off-screen texture
rather than being show in a window.

Rendering to a texture can be useful in a variety of situations:

	Precomputing a complex static texture (like a level’s background
from multiple tiles).

	Applying post-effects to the whole scene with shaders.

	Creating a sprite from a 3D object rendered with OpenGL.

	Etc.

Usage example:

Create a new render-window
window = sfml.RenderWindow(sf.VideoMode(800, 600), 'pySFML window')

Create a new render texture
render_texture = sfml.RenderTexture(500, 500)

The main loop
while window.open:
 # Event processing
 # ...

 # Clear the whole texture with red color
 render_texture.clear(sfml.Color.RED)

 # Draw stuff to the texture
 render_texture.draw(sprite) # sprite is a Sprite
 render_texture.draw(shape) # shape is a Shape
 render_texture.draw(text) # text is a Text

 # We're done drawing to the texture
 render_texture.display()

 # Now we start rendering to the window, clear it first
 window.clear()

 # Draw the texture
 sprite = sfml.Sprite(render_texture.texture)
 window.draw(sprite);

 # End the current frame and display its contents on screen
 window.display()

	
active

	Write-only. If true, the render texture’s context becomes
current for future OpenGL rendering operations (so you shouldn’t
care about it if you’re not doing direct OpenGL stuff). Only one
context can be current in a thread, so if you want to draw
OpenGL geometry to another render target (like a
RenderWindow), don’t forget to activate it again.

If an error occurs, PySFMLException is raised.

	
texture

	Read-only.The target texture, as a Texture. After
drawing to the render-texture and calling display(), you
can retrieve the updated texture using this function, and draw
it using a sprite (for example).

Warning

Textures obtained with this property should never be
modified. The object itself is a normal Texture
object, but the underlying C++ object is specified as
const and a C++ compiler wouldn’t let you attempt to
modify it.

	
smooth

	Whether the smooth filtering is enabled or not. Default value:
False.

	
display()

	Update the contents of the target texture. This method updates
the target texture with what has been drawn so far. Like for
windows, calling this function is mandatory at the end of
rendering. Not calling it may leave the texture in an undefined
state.

	
class sfml.Shader

	The constructor will raise NotImplementedError if called. Use
class methods like load_from_file() or load_from_memory()
instead.

Shaders are programs written using a specific language, executed
directly by the graphics card and allowing to apply real-time
operations to the rendered entities.

There are two kinds of shaders:

	Vertex shaders, that process vertices.

	Fragment (pixel) shaders, that process pixels.

A shader can be composed of either a vertex shader alone, a
fragment shader alone, or both combined (see the variants of the
load classmethods).

Shaders are written in GLSL, which is a C-like language dedicated
to OpenGL shaders. You’ll probably need to learn its basics before
writing your own shaders for SFML.

Like any Python program, a shader has its own variables that you can
set from your Python. Shader handles four different types
of variables:

	floats

	vectors (2, 3 or 4 components)

	textures

	transforms (matrices)

The value of the variables can be changed at any time with
set_parameter():

shader.set_parameter('offset', 2.0)
shader.set_parameter('color', 0.5, 0.8, 0.3)
shader.set_parameter('matrix', transform); # transform is a sfml.Transform
shader.set_parameter('overlay', texture) # texture is a sfml.Texture
shader.set_parameter('texture', sfml.Shader.CURRENT_TEXTURE)

The special Shader.CURRENT_TEXTURE argument maps the given
texture variable to the current texture of the object being drawn
(which cannot be known in advance).

To apply a shader to a drawable, you must pass it as an additional
parameter to RenderTarget.draw():

window.draw(sprite, shader)

Which is in fact just a shortcut for this:

states = sfml.RenderStates()
states.shader = shader
window.draw(sprite, states)

Shaders can be used on any drawable, but some combinations are not
interesting. For example, using a vertex shader on a
Sprite is limited because there are only 4 vertices, the
sprite would have to be subdivided in order to apply wave
effects. Another bad example is a fragment shader with
Text: the texture of the text is not the actual text that
you see on screen, it is a big texture containing all the
characters of the font in an arbitrary order; thus, texture lookups
on pixels other than the current one may not give you the expected
result.

Shaders can also be used to apply global post-effects to the
current contents of the target (like the old PostFx class in
SFML 1). This can be done in two different ways:

	Draw everything to a RenderTexture, then draw it to the main
target using the shader.

	Draw everything directly to the main target, then use
Texture.update() to copy its contents to a texture
and draw it to the main target using the shader.

The first technique is more optimized because it doesn’t involve
retrieving the target’s pixels to system memory, but the second one
doesn’t impact the rendering process and can be easily inserted
anywhere without impacting all the code.

Like Texture that can be used as a raw OpenGL texture,
Shader can also be used directly as a raw shader for
custom OpenGL geometry:

window.active = True
shader.bind()
render OpenGL geometry ...

	
IS_AVAILABLE

	True if the system supports shaders. You shoul always test this
class attribute before using the shader features. If it is
false, then any attempt to use Shader will fail.

	
CURRENT_TEXTURE

	Special type/value that can be passed to set_parameter(),
and that represents the texture of the object being drawn.

	
FRAGMENT

	Fragment (pixel) shader type, as an int class attribute.

	
VERTEX

	Vertex shader type, as an int class attribute.

	
classmethod load_both_types_from_file(str vertex_shader_filename, str fragment_shader_filename)

	Load both the vertex and the fragment shaders. If one of them
fails to load, the shader is left empty (the valid shader is
unloaded). The sources must be text files containing valid
shaders in GLSL language. GLSL is a C-like language dedicated to
OpenGL shaders; you’ll probably need to read a good
documentation for it before writing your own shaders.

PySFMLException is raised if an error occurs.

	
classmethod load_both_types_from_memory(str vertex_shader, str fragment_shader)

	Load both the vertex and the fragment shaders. If one of them
fails to load, the shader is left empty (the valid shader is
unloaded). The sources must be valid shaders in GLSL
language. GLSL is a C-like language dedicated to OpenGL shaders;
you’ll probably need to read a good documentation for it before
writing your own shaders.

PySFMLException is raised if an error occurs.

	
classmethod load_both_types_from_stream(InputStream vertex_stream, InputStream fragment_stream)

	Load both the vertex and fragment shaders from custom
streams. If one of them fails to load, the shader is left empty
(the valid shader is unloaded). The source codes must be valid
shaders in GLSL language. GLSL is a C-like language dedicated to
OpenGL shaders; you’ll probably need to read a good
documentation for it before writing your own shaders.

PySFMLException is raised if an error occurs.

	
classmethod load_from_file(filename, int type)

	Load a single shader, either vertex or fragment, identified by
the type parameter, which must be Shader.FRAGMENT or
Shader.VERTEX. The source must be a text file containing
a valid shader in GLSL language. GLSL is a C-like language
dedicated to OpenGL shaders; you’ll probably need to read a good
documentation for it before writing your own shaders.

PySFMLException is raised if an error occurs.

	
classmethod load_from_memory(str shader, int type)

	Load a single shader, either vertex or fragment, identified by
the type argument, which must be Shader.FRAGMENT or
Shader.VERTEX. The source code must be a valid shader in
GLSL language. GLSL is a C-like language dedicated to OpenGL
shaders; you’ll probably need to read a good documentation for
it before writing your own shaders.

PySFMLException is raised if an error occurs.

	
classmethod load_from_stream(InputStream stream, int type)

	Load a single shader, either vertex or fragment, identified by
the type argument, which must be Shader.FRAGMENT or
Shader.VERTEX. GLSL is a C-like language dedicated to
OpenGL shaders; you’ll probably need to read a good
documentation for it before writing your own shaders.

PySFMLException is raised if an error occurs.

	
bind()

	Bind the shader for rendering (activate it). This method is
normally for internal use only, unless you want to use the
shader with a custom OpenGL rendering instead of a SFML
drawable:

window.active = True
shader.bind()
... render OpenGL geometry ...

	
set_parameter(str name, ...)

	Set a shader parameter.

The first parameter, name, is the name of the variable to
change in the shader. After name, you can pass an argument or
several floats, depending on your need:

	1 float,

	2 floats,

	3 floats,

	4 floats,

	a color,

	a transform,

	a texture.

If you want to pass the texture of the object being drawn, which
cannot be known in advance, you can pass the special value
CURRENT_TEXTURE:

shader.set_parameter('the_texture', sfml.Shader.CURRENT_TEXTURE)

	
class sfml.Transform([float a00, float a01, float a02, float a10, float a11, float a12, float a20, float a21, float a22])

	If called with no arguments, the value is set to the
IDENTITY transform.

A Transform is a 3x3 transform matrix that specifies how
to translate, rotate, scale, shear, project, etc. In mathematical
terms, it defines how to transform a coordinate system into
another.

For example, if you apply a rotation transform to a sprite, the
result will be a rotated sprite. And anything that is transformed
by this rotation transform will be rotated the same way, according
to its initial position.

Transforms are typically used for drawing. But they can also be
used for any computation that requires to transform points between
the local and global coordinate systems of an entity (like
collision detection).

Example:

Define a translation transform
translation = sfml.Transform()
translation.translate(20, 50)

Define a rotation transform
rotation = sf.Transform()
rotation.rotate(45)

Combine them
transform = translation * rotation

Use the result to transform stuff...
point = transform.transform_point(10, 20)
rect = transform.transform_rect(sfml.FloatRect(0, 0, 10, 100))

This class provides the following special methods:

	* and *= operators.

	str() returns the content of the matrix in a human-readable format.

	
IDENTITY

	Class attribute containing the identity matrix.

	
matrix

	Read-only. a list of 16 floats containing the transform elements
as a 4x4 matrix, which is directly compatible with OpenGL
functions.

	
combine(transform)

	Combine the current transform with transform. The result is a
transform that is equivalent to applying this followed by
transform. Mathematically, it is equivalent to a matrix
multiplication.

	
copy()

	Return a new transform object with the same content as self.

	
get_inverse()

	Return the inverse of the transform. If the inverse cannot be
computed, an IDENTITY transform is returned.

	
rotate(float angle[, float center_x, float center_y])

	Combine the current transform with a rotation. This method
returns self, so calls can be chained:

transform = sfml.Transform()
transform.rotate(90).translate(50, 20)

The center of rotation can be provided with center_x and
center_y, so that you can build rotations around arbitrary
points more easily (and efficiently) than the usual
translate(-center).rotate(angle).translate(center).

	
scale(float scale_x, float scale_y[, float, center_x, float center_y])

	Combine the current transform with a scaling. The center of
scaling can be provided with center_x and center_y, so that
you can build scaling around arbitrary points more easily (and
efficiently) than the usual
translate(-center).scale(factors).translate(center).

This method returns self, so calls can be chained:

transform = sfml.Transform()
transform.scale(2, 1, 8, 3).rotate(45)

	
transform_point(float x, float y)

	Transform the point and return it as a tuple.

	
transform_rect(FloatRect rectangle)

	Transform a rectangle and return it as a
FloatRect. Since SFML doesn’t provide support for
oriented rectangles, the result of this function is always an
axis-aligned rectangle. Which means that if the transform
contains a rotation, the bounding rectangle of the transformed
rectangle is returned.

	
translate(float x, float y)

	Combine the current transform with a translation. This method
returns self, so calls can be chained:

transform = sfml.Transform()
transform.translate(100, 200).rotate(45)

	
class sfml.Transformable

	Decomposed transform defined by a position, a rotation and a scale.

This class is provided for convenience, on top of
Transform.

Transform, as a low-level class, offers a great level of
flexibility but it’s not always convenient to manage. One can
easily combine any kind of operation, such as a translation
followed by a rotation followed by a scaling, but once the result
transform is built, there’s no way to go backward and, say, change
only the rotation without modifying the translation and
scaling. The entire transform must be recomputed, which means that
you need to retrieve the initial translation and scale factors as
well, and combine them the same way you did before updating the
rotation. This is a tedious operation, and it requires to store all
the individual components of the final transform.

That’s exactly what Transformable was written for: it
hides these variables and the composed transform behind an easy to
use interface. You can set or get any of the individual components
without worrying about the others. It also provides the composed
transform (as a Transform object), and keeps it
up-to-date.

In addition to the position, rotation and scale,
Transformable provides an “origin” component, which
represents the local origin of the three other components. Let’s
take an example with a 10x10 pixels sprite. By default, the sprite
is positionned/rotated/scaled relatively to its top-left corner,
because it is the local point (0, 0). But if we change the origin
to be (5, 5), the sprite will be positionned/rotated/scaled around
its center instead. And if we set the origin to (10, 10), it will
be transformed around its bottom-right corner.

To keep the Transformable class simple, there’s only one
origin for all the components. You cannot position the sprite
relatively to its top-left corner while rotating it around its
center, for example. To do this kind of thing, use
Transform directly.

Transformable can be used as a base class. It is often
combined with a draw() method
— that’s what SFML’s sprites, texts and shapes do:

// TODO: port to Python
class MyEntity : public sf::Transformable, public sf::Drawable
{
 virtual void draw(sf::RenderTarget& target, sf::RenderStates states) const
 {
 states.transform *= getTransform();
 target.draw(..., states);
 }
};

MyEntity entity;
entity.setPosition(10, 20);
entity.setRotation(45);
window.draw(entity);

It can also be used as a member, if you don’t want to use its API
directly (because you don’t need all its functions, or you have
different naming conventions for example):

// TODO: port to Python
class MyEntity
{
public :
 void SetPosition(const MyVector& v)
 {
 myTransform.setPosition(v.x(), v.y());
 }

 void Draw(sf::RenderTarget& target) const
 {
 target.draw(..., myTransform.getTransform());
 }

private :
 sf::Transformable myTransform;
};

	
origin

	The local origin of the object, as a tuple. When setting the
attribute, you can also pass a Vector2f. The origin of
an object defines the center point for all transformations
(position, scale, rotation). The coordinates of this point must
be relative to the top-left corner of the object, and ignore all
transformations (position, scale, rotation). The default origin
of a transformable object is (0, 0).

	
position

	The position of the object, as a tuple. When setting the
attribute, you can also pass a Vector2f. This method
completely overwrites the previous position. See move() to
apply an offset based on the previous position instead. The
default position of a transformable object is (0, 0).

	
rotation

	The orientation of the object, as a float in the range [0,
360]. This method completely overwrites the previous
rotation. See rotate() to add an angle based on the
previous rotation instead. The default rotation of a
transformable object is 0.

	
scale

	The scale factors of the object. This method completely
overwrites the previous scale. See the scale() to add a
factor based on the previous scale instead. The default scale of
a transformable object is (1, 1).

The object returned by this property will behave like a tuple,
but it might be important in some cases to know that its exact
type isn’t tuple, although its class does inherit tuple. In
practice it should behave just like one, except if you write
code that checks for exact type using the type() function.
Instead, use isinstance():

if isinstance(some_object, tuple):
 pass # We now know that some_object is a tuple

	
x

	Shortcut for self.position[0].

	
y

	Shortcut for self.position[1].

	
get_inverse_transform()

	Return the inverse of the combined Transform of the
object.

	
get_transform()

	Return the combined Transform of the object.

	
move(float x, float y)

	Move the object by a given offset. This method adds to the
current position of the object, unlike position() which
overwrites it. So it is equivalent to the following code:

object.position = object.position + offset

	
rotate(float angle)

	Rotate the object. This method adds to the current rotation of
the object, unlike rotation() which overwrites it. So it
is equivalent to the following code:

object.rotation = object.rotation + angle

	
scale(float x, float y)

	Scale the object. This method multiplies the current scale of
the object, unlike the scale attribute which overwrites
it. So it is equivalent to the following code:

scale = object.scale
object.scale(scale[0] * factor_x, scale[1] * factor_y)

	
class sfml.Vertex([position[, color[, tex_coords]]])

	A vertex is an improved point. It has a position and other extra
attributes that will be used for drawing: a color and a pair of
texture coordinates.

The vertex is the building block of drawing. Everything which is
visible on screen is made of vertices. They are grouped as 2D
primitives (triangles, quads, ... see Blend modes), and
these primitives are grouped to create even more complex 2D
entities such as sprites, texts, etc.

If you use the graphical entities of SFML (Sprite,
Text, Shape) you won’t have to deal with vertices
directly. But if you want to define your own 2D entities, such as
tiled maps or particle systems, using vertices will allow you to
get maximum performances.

This class provides the following special methods:

	repr(vertex) returns a description in format
Vertex(position, color, tex_coords.

Example:

define a 100x100 square, red, with a 10x10 texture mapped on it
vertices = [sfml.Vertex((0, 0), sfml.Color.RED, (0, 0)),
 sfml.Vertex((0, 100), sfml.Color.RED, (0, 10)),
 sfml.Vertex((100, 100), sfml.Color.RED, (10, 10)),
 sfml.Vertex((100, 0), sfml.Color.RED, (10, 0))]

draw it
window.draw(vertices, sfml.QUADS)

Note: although texture coordinates are supposed to be an integer
amount of pixels, their type is float because of some buggy
graphics drivers that are not able to process integer coordinates
correctly.

	
color

	Color of the vertex.

	
position

	2D position of the vertex. The value is always retrieved as a
tuple. It can be set as a tuple or a Vector2f.

	
tex_coords

	Coordinates of the texture’s pixel map to the vertex. The value
is always retrieved as a tuple. It can be set as a tuple or a
Vector2f.

	
copy()

	Return a new vertex with the same value as self.

Shapes

	
class sfml.Shape

	This abstract class inherits Transformable.

Shape is a drawable class that allows to define and
display a custom convex shape on a render target.

Every shape has the following attributes:

	a texture,

	a texture rectangle,

	a fill color,

	an outline color,

	an outline thickness.

Each feature is optional, and can be disabled easily:

	the texture can be None,

	the fill/outline colors can be Color.TRANSPARENT,

	the outline thickness can be zero.

You can write your own derived shape class, there are only two
methods to override:

	get_point_count() must return the number of points of the
shape,

	get_point() must return the points of the shape.

A few concrete shapes are provided: RectangleShape,
CircleShape and ConvexShape.

	
fill_color

	The fill color of the shape. This color is modulated
(multiplied) with the shape’s texture if any. It can be used to
colorize the shape, or change its global opacity. You can use
Color.TRANSPARENT to make the inside of the shape
transparent, and have the outline alone. By default, the shape’s
fill color is opaque white.

	
global_bounds

	Read-only. The global bounding rectangle of the entity, as a
FloatRect. The returned rectangle is in global
coordinates, which means that it takes in account the
transformations (translation, rotation, scale, ...) that are
applied to the entity. In other words, this function returns the
bounds of the sprite in the global 2D world’s coordinate system.

	
local_bounds

	Read-only. The local bounding rectangle of the entity, as a
FloatRect. The returned rectangle is in local
coordinates, which means that it ignores the transformations
(translation, rotation, scale, ...) that are applied to the
entity. In other words, this function returns the bounds of the
entity in the entity’s coordinate system.

	
texture

	The source texture of the shape. Can be None to disable
texturing. Also see set_texture(), which allows you to
update texture_rect automatically.

	
texture_rect

	The sub-rectangle of the texture that the shape will
display. The texture rect is useful when you only want to
display a part of the texture. By default, the texture rect
covers the entire texture.

	
outline_color

	The outline color of the shape. You can use
Color.TRANSPARENT to disable the outline. By default,
the shape’s outline color is opaque white.

	
outline_thickness

	The thickness of the shape’s outline, as a float. This number
cannot be negative. Using zero disables the outline. By default,
the outline thickness is 0.0.

	
get_point(int index)

	This method should be overriden to return a tuple or a
Vector2f containing the coordinates at the position
index.

	
get_point_count()

	This method should be overriden to return the number of points,
as an integer.

	
set_texture(texture[, reset_rect=False])

	Set the source texture of the shape. texture can be None
to disable texturing. If reset_rect is true, the
texture_rect property of the shape is automatically
adjusted to the size of the new texture. If it is false, the
texture rect is left unchanged.

Calling this method does the same thing as modifiying the
texture attribute, except when the reset_rect
parameter is used.

	
update()

	Recompute the internal geometry of the shape. This method must
be called by the derived class everytime the shape’s points
change (i.e. the result of either get_point_count() or
get_point() is different). This includes when the shape
object is created.

If you call this method from a built-in shape, it will raise
NotImplementedError.

	
class sfml.RectangleShape([size])

	This class inherits Shape. size can be either a tuple or
a Vector2f.

Usage example:

rectangle = sfml.RectangleShape((100, 50))
rectangle.outline_color = sfml.Color.RED
rectangle.outline_thickness = 5
rectangle.position = (10, 20)
...
window.draw(rectangle)

	
size

	The size of the rectangle, as a tuple. The value can also be set
from a Vector2f.

	
class sfml.CircleShape([float radius[, int point_count]])

	This class inherits Shape.

Usage example:

circle = sfml.CircleShape(150)
circle.outline_color = sfml.Color.Red
circle.outline_thickness = 5
circle.position = (10, 20)
...
window.draw(circle)

Since the graphics card can’t draw perfect circles, we have to fake
them with multiple triangles connected to each other. The
point_count property defines how many of these triangles to
use, and therefore defines the quality of the circle.

The number of points can also be used for another purpose; with
small numbers you can create any regular polygon shape: equilateral
triangle, square, pentagon, hexagon, ...

	
point_count

	The number of points in the circle.

	
radius

	The radius of the circle, as a float.

	
class sfml.ConvexShape([int point_count])

	This class inherits Shape.

Specialized shape representing a convex polygon.

It is important to keep in mind that a convex shape must always
be... convex, otherwise it may not be drawn correctly. Moreover,
the points must be defined in order; using a random order would
result in an incorrect shape.

Usage example:

polygon = sfml.ConvexShape(3)
polygon.set_point(0, (0, 0))
polygon.set_point(1, (0, 10))
polygon.set_point(2, (25, 5))
polygon.outline_color = sfml.Color.RED
polygon.outline_thickness = 5
polygon.position = (10, 20)
...
window.draw(polygon)

	
get_point(int index)

	Return the position of a point. The result is undefined if
index is out of the valid range.

	
get_point_count()

	Return the number of points of the polygon.

	
set_point(int index, point)

	Set the position of a point. Don’t forget that the polygon must
remain convex, and the points need to stay ordered!
set_point_count() must be called first in order to set the
total number of points. The result is undefined if index is out
of the valid range.

point may be either a tuple or a Vector2f.

	
set_point_count(int count)

	Set the number of points of the polygon. count must be greater
than 2 to define a valid shape.

Image dislay

	
class sfml.Image(int width, int height[, color])

	Image is an abstraction to manipulate images as
bidimensional arrays of pixels. It allows you to load, manipulate
and save images.

The constructor create images of the specified size, filled with a
color. For loading images, you should use one of the class
methods. load_from_file() is the most common one.

Image can handle a unique internal representation of
pixels, which is RGBA 32 bits. This means that a pixel must be
composed of 8 bits red, green, blue and alpha channels — just
like a Color. All the functions that return an array of
pixels follow this rule, and all parameters that you pass to
Image methods (such as load_from_pixels()) must use
this representation as well.

An image can be copied, but you should note that it’s a heavy
resource.

Usage example:

Load an image file from a file
background = sfml.Image.load_from_file('background.jpg')

Create a 20x20 image filled with black color
image = sfml.Image(20, 20, sfml.Color.BLACK)

Copy image1 on image2 at position (10, 10)
image.copy(background, 10, 10)

Make the top-left pixel transparent
color = image[0,0]
color.a = 0
image[0,0] = color

Save the image to a file
image.save_to_file('result.png')

This class provides the following special methods:

	image[tuple] returns a pixel from the image, as a
Color object. Equivalent to
get_pixel(). Example:

print image[0,0] # Create tuple implicitly
print image[(0,0)] # Create tuple explicitly

	image[tuple] = color sets a pixel of the image to a
Color object value. Equivalent to
set_pixel(). Example:

image[0,0] = sfml.Color(10, 20, 30) # Create tuple implicitly
image[(0,0)] = sfml.Color(10, 20, 30) # Create tuple explicitly

	
height

	Read-only. The height of the image.

	
size

	Read-only. The size of the image, as a tuple.

	
width

	Read-only. The width of the image.

	
classmethod load_from_file(filename)

	Load the image from filename on disk and return a new
Image object. The supported image formats are bmp, png,
tga, jpg, gif, psd, hdr and pic. Some format options are not
supported, like progressive jpeg.

PySFMLException is raised if an error occurs.

	
classmethod load_from_memory(bytes mem)

	Load the image from a file in memory. The supported image
formats are bmp, png, tga, jpg, gif, psd, hdr and pic. Some
format options are not supported, like progressive jpeg.

PySFMLException is raised if an error occurs.

	
classmethod load_from_pixels(int width, int height, bytes pixels)

	Return a new image, created from a str/bytes object of
pixels. pixels is assumed to contain 32-bits RGBA pixels, and
have the given width and height. If not, the behavior is
undefined. If pixels is None, an empty image is created.

	
classmethod load_from_stream(InputStream stream)

	Load the image from a custom stream. The supported image formats
are bmp, png, tga, jpg, gif, psd, hdr and pic. Some format
options are not supported, like progressive jpeg.

PySFMLException is raised if an error occurs.

	
copy(Image source, int dest_x, int dest_y[, source_rect, apply_alpha])

	Copy pixels from another image onto this one. This method does a
slow pixel copy and should not be used intensively. It can be
used to prepare a complex static image from several others, but
if you need this kind of feature in real-time you’d better use
RenderTexture.

Without source_rect, the whole image is copied. source_rect
can be either an IntRect or a tuple.

If apply_alpha is provided, the transparency of source‘s
pixels is applied. If it isn’t, the pixels are copied unchanged
with their alpha value.

	
create_mask_from_color(color, int alpha)

	Create a transparency mask from a specified color-key. This
method sets the alpha value of every pixel matching the given
color to alpha (0 by default), so that they become
transparent.

	
flip_horizontally()

	Flip the image horizontally (left <-> right).

	
flip_vertically()

	Flip the image vertically (top <-> bottom).

	
get_pixel(int x, int y)

	Return the color of the pixel at (x, y).

IndexError is raised if the pixel is out of range.

	
get_pixels()

	Return a str (in Python 2) or a bytes (Python 3) object to the
pixels. The returned value points to an array of RGBA pixels
made of 8 bits integers components. The size of the object is
width * height * 4. If the image is empty,
None is returned.

	
save_to_file(filename)

	Save the image to a file on disk. The format of the image is
automatically deduced from the extension. The supported image
formats are bmp, png, tga and jpg. The destination file is
overwritten if it already exists. This method fails if the image
is empty.

PySFMLException is raised if saving fails.

	
set_pixel(int x, int y, color)

	Set the color of the pixel at (x, y) to color. This method
doesn’t check the validity of the pixel coordinates, using
out-of-range values will result in an undefined behaviour.

IndexError is raised if the pixel is out of range.

	
class sfml.Texture([int width[, int height]])

	The constructor serves the same purpose as Texture.create() in
C++ SFML. It raises PySFMLException if texture creation fails.

Image living on the graphics card that can be used for
drawing. A texture lives in the graphics card memory, therefore it
is very fast to draw a texture to a render target, or copy a render
target to a texture (the graphics card can access both directly).

Being stored in the graphics card memory has some drawbacks. A
texture cannot be manipulated as freely as a Image, you
need to prepare the pixels first and then upload them to the
texture in a single operation (see update()).

Texture makes it easy to convert from/to Image, but keep
in mind that these calls require transfers between the graphics
card and the central memory, therefore they are slow operations.

A texture can be loaded from an image, but also directly from a
file/memory/stream. The necessary shortcuts are defined so that you
don’t need an image first for the most common cases. However, if
you want to perform some modifications on the pixels before
creating the final texture, you can load your file to a
Image, do whatever you need with the pixels, and then call
load_from_image().

Since they live in the graphics card memory, the pixels of a
texture cannot be accessed without a slow copy first. And they
cannot be accessed individually. Therefore, if you need to read the
texture’s pixels (like for pixel-perfect collisions), it is
recommended to store the collision information separately, for
example in an array of booleans.

Like Image, Texture can handle a unique internal
representation of pixels, which is RGBA 32 bits. This means that a
pixel must be composed of 8 bits red, green, blue and alpha
channels — just like a Color.

Usage example:

This example shows the most common use of Texture:
drawing a sprite

Load a texture from a file
texture = sfml.load_from_file('texture.png')

Assign it to a sprite
sprite = sfml.Sprite(texture)

Draw the textured sprite
window.draw(sprite)

This example shows another common use of Texture:
streaming real-time data, like video frames

Create an empty texture
texture = sfml.Texture(640, 480)

Create a sprite that will display the texture
sprite = sfml.Sprite(texture)

while True:
 # ...

 # Update the texture
 # Get a fresh chunk of pixels (the next frame of a movie, for example)
 # This should be a string object in Python 2, and a bytes object in Python 3
 pixels = get_pixels()
 texture.update(pixels)

 # draw it
 window.draw(sprite)

 # ...

	
MAXIMUM_SIZE

	Read-only. The maximum texture size allowed, as a class
attribute. This maximum size is defined by the graphics
driver. You can expect a value of 512 pixels for low-end
graphics card, and up to 8192 pixels or more for newer hardware.

	
NORMALIZED

	Constant for the type of texture coordinates where the range is
[0 .. 1], as a class attribute.

	
PIXELS

	Constant for the type of texture coordinates where the range is
[0 .. size], as a class attribute.

	
height

	Read-only. The height of the texture.

	
repeated

	Whether the texture is repeated or not. Repeating is involved
when using texture coordinates outside the texture rectangle [0,
0, width, height]. In this case, if repeat mode is enabled, the
whole texture will be repeated as many times as needed to reach
the coordinate (for example, if the X texture coordinate is 3 *
width, the texture will be repeated 3 times). If repeat mode is
disabled, the “extra space” will instead be filled with border
pixels. Repeating is disabled by default.

Warning

On very old graphics cards, white pixels may appear when the
texture is repeated. With such cards, repeat mode can be used
reliably only if the texture has power-of-two dimensions
(such as 256x128).

	
size

	Read-only. The size of the texture.

	
smooth

	Whether the smooth filter is enabled or not. When the filter is
activated, the texture appears smoother so that pixels are less
noticeable. However if you want the texture to look exactly the
same as its source file, you should leave it disabled. The
smooth filter is disabled by default.

	
width

	Read-only. The width of the texture.

	
classmethod load_from_file(filename[, area])

	Load the texture from a file on disk. This function is a
shortcut for the following code:

image = sfml.Image.load_from_file(filename)
sfml.Texture.load_from_image(image, area)

area, if specified, may be either a tuple or an
IntRect. Then only a sub-rectangle of the whole image
will be loaded. If the area rectangle crosses the bounds of the
image, it is adjusted to fit the image size.

The maximum size for a texture depends on the graphics driver
and can be retrieved with the getMaximumSize function.

PySFMLException is raised if an error occurs.

	
classmethod load_from_image(image[, area])

	Load the texture from an image.

area, if specified, may be either a tuple or an
IntRect. Then only a sub-rectangle of the whole image
will be loaded. If the area rectangle crosses the bounds of the
image, it is adjusted to fit the image size.

The maximum size for a texture depends on the graphics driver
and is accessible with the MAXIMUM_SIZE class attribute.

PySFMLException is raised if an error occurs.

	
classmethod load_from_memory(bytes data[, area])

	Load the texture from a file in memory. This function is a
shortcut for the following code:

image = sfml.Image.load_from_memory(data)
texture = sfml.Texture.load_from_image(image, area)

area, if specified, may be either a tuple or an
IntRect. Then only a sub-rectangle of the whole image
will be loaded. If the area rectangle crosses the bounds of the
image, it is adjusted to fit the image size.

The maximum size for a texture depends on the graphics driver
and is accessible with the MAXIMUM_SIZE class attribute.

PySFMLException is raised if an error occurs.

	
classmethod load_from_stream(InputStream stream[, area])

	Load the texture from a custom stream. This class method is a
shortcut for the following code:

image = sfml.Image.load_from_stream(stream)
texture = sfml.Texture.load_from_image(image, area)

area can a tuple of an IntRect, and is used to load
only a sub-rectangle of the whole image. If you want the entire
image then leave the default value (which is an empty
IntRect). If the area rectangle crosses the bounds of
the image, it is adjusted to fit the image size.

The maximum size for a texture depends on the graphics driver
and can be retrieved with the MAXIMUM_SIZE class
attribute.

PySFMLException is raised if an error occurs.

	
bind([int coordinate_type])

	Activate the texture for rendering. This method is mainly used
internally by the SFML rendering system. However it can be
useful when using Texture with OpenGL code (this method
is equivalent to glBindTexture()).

coordinate_type controls how texture coordinates will be
interpreted. If NORMALIZED (the default), they must be
in range [0 .. 1], which is the default way of handling texture
coordinates with OpenGL. If PIXELS, they must be given
in pixels (range [0 .. size]). This mode is used internally by
the graphics classes of SFML, it makes the definition of texture
coordinates more intuitive for the high-level API, users don’t
need to compute normalized values.

	
copy_to_image()

	Copy the texture pixels to an image and return it. This method
performs a slow operation that downloads the texture’s pixels
from the graphics card and copies them to a new image,
potentially applying transformations to pixels if necessary
(texture may be padded or flipped).

	
update(source, ...)

	This method can be called in three ways, to be consistent with
the C++ method overloading:

update(bytes pixels[, width, height, x, y])

Update a part of the texture from an array of pixels. The size
of pixels must match the width and height arguments, and it
must contain 32-bits RGBA pixels. No additional check is
performed on the size of the pixel array or the bounds of the
area to update, passing invalid arguments will lead to an
undefined behaviour.

update(image[, x, y])

Update the texture from an image. Although the source image can
be smaller than the texture, it’s more convenient to use the x
and y parameters for updating a sub-area of the texture.

update(window[, x, y])

Update the texture from the contents of a window. Although the
source window can be smaller than the texture, it’s more
convenient to use the x and y parameters for updating a
sub-area of the texture. No additional check is performed on the
size of the window, passing a window bigger than the texture
will lead to an undefined behaviour.

	
class sfml.Sprite([texture])

	This class inherits Transformable.

Drawable representation of a texture, with its own transformations,
color, etc.

It inherits all the attributes from Transformable:
position, rotation, scale, origin. It also adds sprite-specific
properties such as the texture to use, the part of it to display,
and some convenience functions to change the overall color of the
sprite, or to get its bounding rectangle.

Sprite works in combination with the Texture class, which
loads and provides the pixel data of a given texture.

The separation of Sprite and Texture allows more
flexibility and better performances: indeed a Texture is a
heavy resource, and any operation on it is slow (often too slow for
real-time applications). On the other side, a sf::Sprite is a
lightweight object which can use the pixel data of a
Texture and draw it with its own
transformation/color/blending attributes.

Usage example:

Load a texture
texture = sfml.Texture.load_from_file('texture.png')

Create a sprite
sprite = sfml.Sprite(texture)
sprite.texture_rect = sfml.IntRect(10, 10, 50, 30)
sprite.color = sfml.Color(255, 255, 255, 200)
sprite.position = (100, 25)

Draw it
window.draw(sprite)

	
color

	The global color of the sprite. This color is modulated
(multiplied) with the sprite’s texture. It can be used to
colorize the sprite, or change its global opacity. By default,
the sprite’s color is opaque white.

	
global_bounds

	Read-only. The global bounding rectangle of the entity, as a
FloatRect.

The returned rectangle is in global coordinates, which means
that it takes into account the transformations (translation,
rotation, scale, ...) that are applied to the entity. In other
words, this function returns the bounds of the sprite in the
global 2D world’s coordinate system.

	
local_bounds

	Read-only. The local bounding rectangle of the entity, as a
FloatRect.

The returned rectangle is in local coordinates, which means that
it ignores the transformations (translation, rotation, scale,
...) that are applied to the entity. In other words, this
function returns the bounds of the entity in the entity’s
coordinate system.

	
texture

	The source Texture of the sprite, or None if no
texture has been set. Also see set_texture(), which lets
you provide another argument.

	
copy()

	Return a new Sprite object with the same value. The new sprite’s
texture is the same as the current one (no new texture is created).

	
get_texture_rect()

	Return the sub-rectangle of the texture displayed by the sprite,
as an IntRect. The texture rect is useful when you only
want to display a part of the texture. By default, the texture
rect covers the entire texture.

Warning

This method returns a copy of the rectangle, so code like
this won’t work as expected:

sprite.get_texture_rect().top = 10
Or this:
rect = sprite.get_texture_rect()
rect.top = 10

Instead, you need to call set_texture_rect() with the
desired rect:

rect = sprite.get_texture_rect()
rect.top = 10
sprite.set_texture_rect(rect)

	
set_texture(texture[, reset_rect=False])

	Set the source Texture of the sprite. If reset_rect
is True, the texture rect of the sprite is automatically
adjusted to the size of the new texture. If it is False, the
texture rect is left unchanged.

	
set_texture_rect(rect)

	Set the sub-rectangle of the texture displayed by the sprite, as
an IntRect. The texture rect is useful when you only
want to display a part of the texture. By default, the texture
rect covers the entire texture. rect may be an
IntRect or a tuple.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

 	API reference

 	Graphics

Text

	
class sfml.Font

	The constructor will raise NotImplementedError if called. Use
class methods like load_from_file() or load_from_memory()
instead.

The following types of fonts are supported: TrueType, Type 1, CFF,
OpenType, SFNT, X11 PCF, Windows FNT, BDF, PFR and Type 42.

Once it’s loaded, you can retrieve three types of information about the font:

	Global metrics, such as the line spacing.

	Per-glyph metrics, such as bounding box or kerning.

	Pixel representation of glyphs.

Fonts alone are not very useful: they hold the font data but cannot
make anything useful of it. To do so you need to use the
Text class, which is able to properly output text with
several options such as character size, style, color, position,
rotation, etc. This separation allows more flexibility and better
performances: a font is a heavy resource, and any operation on it
is slow (often too slow for real-time applications). On the other
hand, a Text is a lightweight object which can combine the
glyphs data and metrics of a font to display any text on a render
target. Note that it is also possible to bind several text
instances to the same font.

Usage example:

Load a font from a file, catch PySFMLException
if you want to handle the error
font = sfml.Font.load_from_file('arial.ttf')

Create a text which uses our font
text1 = sfml.Text()
text1.font = font
text1.character_size = 30
text1.style = sfml.Text.REGULAR

Create another text using the same font, but with different parameters
text2 = sfml.Text()
text2.font = font
text2.character_size = 50
text1.style = sfml.Text.ITALIC

Apart from loading font files, and passing them to instances of
Text, you should normally not have to deal directly with
this class. However, it may be useful to access the font metrics or
rasterized glyphs for advanced usage.

	
classmethod load_from_file(filename)

	Load the font from filename, and return a new font object.

Note that this class method knows nothing about the standard
fonts installed on the user’s system, so you can’t load them
directly.

PySFMLException is raised if an error occurs.

	
classmethod load_from_memory(bytes data)

	Load the font from the string/bytes object (for Python 2/3,
respectively) and return a new font object.

Warning

SFML cannot preload all the font data in this function, so
you should keep a reference to the data object as long as
the font is used.

	
classmethod load_from_stream(InputStream stream)

	Load the font from a custom stream.

	
get_glyph(int code_point, int character_size, bool bold)

	Return a glyph corresponding to code_point and character_size.

	
get_texture(int character_size)

	Retrieve the texture containing the loaded glyphs of a certain size.

The contents of the returned texture changes as more glyphs are
requested, thus it is not very relevant. It is mainly used
internally by Text.

	
get_kerning(int first, int second, int character_size)

	Return the kerning offset of two glyphs.

The kerning is an extra offset (negative) to apply between two
glyphs when rendering them, to make the pair look more
“natural”. For example, the pair “AV” have a special kerning to
make them closer than other characters. Most of the glyphs pairs
have a kerning offset of zero, though.

	
get_line_spacing(int character_size)

	Get the line spacing.

Line spacing is the vertical offset to apply between two
consecutive lines of text.

	
class sfml.Glyph

	A glyph is the visual representation of a character. Glyph
structure provides the information needed to handle the glyph:

	its coordinates in the font’s texture,

	its bounding rectangle,

	the offset to apply to get the starting position of the next
glyph.

	
advance

	Offset to move horizontically to the next character.

	
bounds

	Bounding rectangle of the glyph as an IntRect, in
coordinates relative to the baseline.

	
texture_rect

	Texture coordinates of the glyph inside the font’s texture, as
an IntRect.

	
class sfml.Text(string, font[, character_size=0])

	This class inherits Transformable.

string can be a bytes/str/unicode object. SFML will internally
store characters as 32-bit integers. A bytes object (str in Python
2) will end up being interpreted by SFML as an “ANSI string”
(cp1252 encoding). A unicode object (str in Python 3) will be
interpreted as 32-bit code points.

Text is a drawable class that allows to easily display
some text with custom style and color on a render target.

It inherits all the functions from Transformable:
position, rotation, scale, origin. It also adds text-specific
properties such as the font to use, the character size, the font
style (bold, italic, underlined), the global color and the text to
display of course. It also provides convenience functions to
calculate the graphical size of the text, or to get the global
position of a given character.

Text works in combination with the Font class,
which loads and provides the glyphs (visual characters) of a given
font. The separation of Font and Text allows more
flexibility and better performances: a Font is a heavy
resource, and any operation on it is slow (often too slow for
real-time applications). On the other hand, a Text is a
lightweight object which can combine the glyphs data and metrics of
a Font to display any text on a render target.

Usage example:

Declare and load a font
font = sfml.Font.loadFromFile('font.ttf')

Create a text
text = sfml.Text('hello')
text.font = font
text.character_size = 30
text.style = sfml.Text.BOLD
text.color = sfml.Color.RED

Draw it
window.draw(text)

	
character_size

	The size of the characters, pixels. The default size is 30.

	
color

	The global color of the text. The default color is opaque white.

	
font

	The text’s font.

	
global_bounds

	Read-only. The global bounding rectangle of the entity, as a
FloatRect. The returned rectangle is in global
coordinates, which means that it takes in account the
transformations (translation, rotation, scale, ...) that are
applied to the entity. In other words, this function returns the
bounds of the sprite in the global 2D world’s coordinate system.

	
local_bounds

	Read-only. The local bounding rectangle of the entity, as a
FloatRect. The returned rectangle is in local
coordinates, which means that it ignores the transformations
(translation, rotation, scale, ...) that are applied to the
entity. In other words, this function returns the bounds of the
entity in the entity’s coordinate system.

	
string

	This attribute can be set as either a str or unicode
object. The value retrieved will be either str or
unicode as well, depending on what type has been set
before. See Text for more information.

	
style

	Can be one or more of the following:

	sfml.Text.REGULAR

	sfml.Text.BOLD

	sfml.Text.ITALIC

	sfml.Text.UNDERLINED

Example:

text.style = sfml.Text.BOLD | sfml.Text.ITALIC

	
find_character_pos(int index)

	Return the position of the index-th character. This method
computes the visual position of a character from its index in
the string. The returned position is in global coordinates
(translation, rotation, scale and origin are applied). If
index is out of range, the position of the end of the string
is returned.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

 	API reference

Events

Event types reference

	Type
	Attributes
	Remarks

	Event.CLOSED
	
	In fullscreen, Alt + F4 won’t send the CLOSED event (on GNU/Linux, at least).

	Event.RESIZED
	width, height
	

	Event.LOST_FOCUS
	
	

	Event.GAINED_FOCUS
	
	

	Event.TEXT_ENTERED
	unicode
	The attribute lets you retrieve the character entered by the user, as a Unicode string.

	Event.KEY_PRESSED, Event.KEY_RELEASED
	code, alt, control, shift, system
	code is the code of the key that was pressed/released, the other attributes are booleans and tell you if the alt/control/shit/system modifier was pressed.

	Event.MOUSE_WHEEL_MOVED
	delta, x, y
	The attribute contains the mouse wheel move (positive if forward, negative if backward).

	Event.MOUSE_BUTTON_PRESSED, Event.MOUSE_BUTTON_RELEASED
	button, x, y
	See the Mouse class for the button codes.

	Event.MOUSE_MOVED
	x, y
	

	Event.MOUSE_ENTERED
	
	

	Event.MOUSE_LEFT
	
	

	Event.JOYSTICK_BUTTON_PRESSED, Event.JOYSTICK_BUTTON_RELEASED
	joystick_id, button
	button is a number between 0 and Joystick.BUTTON_COUNT- 1.

	Event.JOYSTICK_MOVED
	joystick_id, axis, position
	See the Joystick class for the axis codes.

	Event.JOYSTICK_CONNECTED, Event.JOYSTICK_DISCONNECTED
	joystick_id
	

	
class sfml.Event

	This class behaves differently from the C++ sf::Event class.
Every Event object will always only feature the attributes that
actually make sense regarding the event type. This means that
there is no need for the C++ union; you just access whatever
attribute you want.

For example, this is the kind of code you’d write in C++:

if (event.Type == sf::Event::KeyPressed &&
 event.Key.Code == sf::Keyboard::Escape)
{
 // ...
}

In Python, it becomes:

if event.type == sfml.Event.KEY_PRESSED and event.code == sfml.Keyboard.ESCAPE:
 # ...

Note

All the events have Event type. There are no specific
subtypes like KeyPressedEvent or
MouseEnteredEvent. Instead, events are common Python objects
in the sense that their attributes can be modified at runtime,
unlike other pySFML objects. This is how their specific
attributes are set.

This class provides the following special methods:

	str(event) returns a description of the event with its name
and its attributes.

	
NAMES

	A class attribute that maps event codes to a short description:

>>> sfml.Event.NAMES[sfml.Event.CLOSED]
'Closed'
>>> sfml.Event.NAMES[sfml.Event.KEY_PRESSED]
'Key pressed'

If you want to print this information about a specific object,
you can simply use print; Event.__str__() will look up
the description for you.

Event types:

	
CLOSED

	The window requested to be closed.

	
RESIZED

	The window was resized.

	
LOST_FOCUS

	The window lost focus.

	
GAINED_FOCUS

	The window gained focus.

	
TEXT_ENTERED

	A character was entered.

	
KEY_PRESSED

	A key was pressed.

	
KEY_RELEASED

	A key was released.

	
MOUSE_WHEEL_MOVED

	The mouse wheel was scrolled.

	
MOUSE_BUTTON_PRESSED

	A mouse button was pressed.

	
MOUSE_BUTTON_RELEASED

	A mouse button was released.

	
MOUSE_MOVED

	The mouse cursors moved.

	
MOUSE_ENTERED

	The mouse cursor entered the area of the window.

	
MOUSE_LEFT

	The mouse cursor entered the area of the window.

	
JOYSTICK_BUTTON_PRESSED

	A joystick button was pressed.

	
JOYSTICK_BUTTON_RELEASED

	A joystick button was released.

	
JOYSTICK_MOVED

	The joystick moved along an axis.

	
JOYSTICK_CONNECTED

	A joystick was connected.

	
JOYSTICK_DISCONNECTED

	A joystick was disconnected.

	
class sfml.Joystick

	This class gives access to the real-time state of the joysticks.

It only contains static functions, so it’s not meant to be
instanciated. Instead, each joystick is identified by an index that
is passed to the functions of this class. Calling the constructor
will raise NotImplementedError.

This class allows users to query the state of joysticks at any time
and directly, without having to deal with a window and its
events. Compared to the Event.JOYSTICK_MOVED,
Event.JOYSTICK_BUTTON_PRESSED and
Event.JOYSTICK_BUTTON_RELEASED events, this class can
retrieve the state of axes and buttons of joysticks at any time
(you don’t need to store and update a boolean on your side in order
to know if a button is pressed or released), and you always get the
real state of joysticks, even if they are moved, pressed or
released when your window is out of focus and no event is
triggered.

SFML supports:

	8 joysticks (COUNT)

	32 buttons per joystick (BUTTON_COUNT)

	8 axes per joystick (AXIS_COUNT)

Unlike the keyboard or mouse, the state of joysticks is sometimes
not directly available (depending on the OS), so the update()
method must be called in order to update the current state of
joysticks. When you have a window with event handling, this is done
automatically, you don’t need to call anything. But if you have no
window, or if you want to check joysticks state before creating
one, you must call update() explicitely.

Usage example:

Is joystick #0 connected?
connected = sfml.Joystick.is_connected(0)

How many buttons does joystick #0 support?
buttons = sfml.Joystick.get_button_count(0)

Does joystick #0 define a X axis?
has_x = sfml.Joystick.has_axis(0, sfml.Joystick.X)

Is button #2 pressed on joystick #0?
pressed = sfml.Joystick.is_button_pressed(0, 2)

What's the current position of the Y axis on joystick #0?
position = sfml.Joystick.get_axis_position(0, sfml.Joystick.Y)

	
COUNT

	The maximum number of supported joysticks.

	
BUTTON_COUNT

	The maximum number of supported buttons.

	
AXIS_COUNT

	The maximum number of supported axes.

Axes codes:

	
X

	The x axis.

	
Y

	The y axis.

	
Z

	The z axis.

	
R

	The r axis.

	
U

	The u axis.

	
V

	The v axis.

	
POV_X

	The x axis of the point-of-view hat.

	
POV_Y

	The y axis of the point-of-view hat.

	
classmethod is_connected(int joystick)

	Return True is joystick is connected, otherwise False
is returned.

	
classmethod get_button_count(int joystick)

	Return the number of buttons supported by joystick. If the
joystick is not connected, return 0.

	
classmethod has_axis(int joystick, int axis)

	Return whether joystick supports the given axis. If the
joystick isn’t connected, False is returned. axis should
be an axis code.

	
classmethod is_button_pressed(int joystick, int button)

	Return whether button is pressed on joystick. If the
joystick isn’t connected, False is returned.

	
classmethod get_axis_position(int joystick, int axis)

	Return the current position along axis as a float. If the
joystick is not connected, 0.0 is returned. axis should be an
axis code.

	
classmethod update()

	Update the state of all the joysticks. You don’t need to call
this method yourself in most cases. If you haven’t created any
window, however, you will need to call it to update the joystick
state.

	
class sfml.Keyboard

	This class provides an interface to the state of the keyboard. It
only contains static methods (a single keyboard is assumed), so
it’s not meant to be instanciated.

This class allows users to query the keyboard state at any time and
directly, without having to deal with a window and its
events. Compared to the Event.KEY_PRESSED and
Event.KEY_RELEASED events, Keyboard can retrieve the state
of a key at any time (you don’t need to store and update a boolean
on your side in order to know if a key is pressed or released), and
you always get the real state of the keyboard, even if keys are
pressed or released when your window is out of focus and no event
is triggered.

Usage example:

if sfml.Keyboard.is_key_pressed(sfml.Keyboard.LEFT):
 pass # move left...
elif sfml.Keyboard.is_key_pressed(sfml.Keyboard.RIGHT):
 pass # move right...
elif sfml.Keyboard.is_key_pressed(sfml.Keyboard.ESCAPE):
 pass # quit...

Key codes:

	
A

	

	
B

	

	
C

	

	
D

	

	
E

	

	
F

	

	
G

	

	
H

	

	
I

	

	
J

	

	
K

	

	
L

	

	
M

	

	
N

	

	
O

	

	
P

	

	
Q

	

	
R

	

	
S

	

	
T

	

	
U

	

	
V

	

	
W

	

	
X

	

	
Y

	

	
Z

	

	
NUM0

	The 0 key.

	
NUM1

	The 1 key.

	
NUM2

	The 2 key.

	
NUM3

	The 3 key.

	
NUM4

	The 4 key.

	
NUM5

	The 5 key.

	
NUM6

	The 6 key.

	
NUM7

	The 7 key.

	
NUM8

	The 8 key.

	
NUM9

	The 9 key.

	
ESCAPE

	

	
L_CONTROL

	The left control key.

	
L_SHIFT

	The left shift key.

	
L_ALT

	The left alt key.

	
L_SYSTEM

	The left OS-specific key, e.g. window, apple or home key.

	
R_CONTROL

	The right control key.

	
R_SHIFT

	The right shift key.

	
R_ALT

	The right alt key.

	
R_SYSTEM

	The right OS-specific key, e.g. window, apple or home key.

	
MENU

	The menu key.

	
L_BRACKET

	The [key.

	
R_BRACKET

	The] key.

	
SEMI_COLON

	The ; key.

	
COMMA

	The , key.

	
PERIOD

	The . key.

	
QUOTE

	The ' key.

	
SLASH

	The / key.

	
BACK_SLASH

	The \ key.

	
TILDE

	The ~ key.

	
EQUAL

	The = key.

	
DASH

	The - key.

	
SPACE

	

	
RETURN

	

	
BACK_SPACE

	The back space key.

	
TAB

	The tabulation key.

	
PAGE_UP

	

	
PAGE_DOWN

	

	
END

	

	
HOME

	

	
INSERT

	

	
DELETE

	

	
ADD

	The + key.

	
SUBTRACT

	The - key.

	
MULTIPLY

	The * key.

	
DIVIDE

	The / key.

	
LEFT

	The left arrow.

	
RIGHT

	The right arrow.

	
UP

	The up arrow.

	
DOWN

	The down arrow.

	
NUMPAD0

	The numpad 0 key.

	
NUMPAD1

	The numpad 1 key.

	
NUMPAD2

	The numpad 2 key.

	
NUMPAD3

	The numpad 3 key.

	
NUMPAD4

	The numpad 4 key.

	
NUMPAD5

	The numpad 5 key.

	
NUMPAD6

	The numpad 6 key.

	
NUMPAD7

	The numpad 7 key.

	
NUMPAD8

	The numpad 8 key.

	
NUMPAD9

	The numpad 9 key.

	
F1

	

	
F2

	

	
F3

	

	
F4

	

	
F5

	

	
F6

	

	
F7

	

	
F8

	

	
F9

	

	
F10

	

	
F11

	

	
F12

	

	
F13

	

	
F14

	

	
F15

	

	
PAUSE

	

	
KEY_COUNT

	The total number of keyboard keys.

	
classmethod is_key_pressed(int key)

	Return True if key is pressed, otherwise False is
returned. key should a value from the key codes.

	
class sfml.Mouse

	This class gives access to the real-time state of the mouse. It
only contains static functions (a single mouse is assumed), so it’s
not meant to be instanciated. Calling the constructor will raise
NotImplementedError.

This class allows users to query the mouse state at any time and
directly, without having to deal with a window and its
events. Compared to the Event.MOUSE_MOVED,
Event.MOUSE_BUTTON_PRESSED and
Event.MOUSE_BUTTON_RELEASED events, this class can retrieve
the state of the cursor and the buttons at any time (you don’t need
to store and update a boolean on your side in order to know if a
button is pressed or released), and you always get the real state
of the mouse, even if it is moved, pressed or released when your
window is out of focus and no event is triggered.

The set_position() and get_position() methods can be
used to change or retrieve the current position of the mouse
pointer. There are two versions: one that operates in global
coordinates (relative to the desktop) and one that operates in
window coordinates (relative to a specific window).

Usage example:

if sfml.Mouse.is_button_pressed(sfml.Mouse.LEFT):
 pass # left click...

Get global mouse position
position = sfml.Mouse.get_position()

Set mouse position relative to a window
sfml.Mouse.set_position((100, 200), window)

Mouse buttons codes:

	
LEFT

	The left mouse button.

	
RIGHT

	The right mouse button.

	
MIDDLE

	The middle (wheel) mouse button.

	
X_BUTTON1

	The first extra mouse button.

	
X_BUTTON2

	The second extra mouse button.

	
BUTTON_COUNT

	The total number of mouse buttons.

	
classmethod is_button_pressed(int button)

	Return True if button is pressed, otherwise returns
False. button should be a mouse button
code.

	
classmethod get_position([window])

	Return a tuple with the current position of the cursor. With no
arguments, the global position on the desktop is returned. If a
window argument is provided, the position relative to the
window is returned.

	
classmethod set_position(tuple position[, window])

	Set the current position of the cursor. With only one argument,
position is considered a as global desktop position. If a
window argument is provided, the position is considered as
relative to the window.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pySFML - Cython 0.2 documentation

 	API reference

Audio

	
class sfml.Chunk

	A chunk of audio data to stream. See SoundStream.

	
samples

	Should be a string in Python 2, and bytes in Python 3.

	
class sfml.Listener

	The audio listener is the point in the scene from where all the
sounds are heard. The audio listener defines the global properties
of the audio environment: where and how sounds and musics are
heard.

If View is the eyes of the user, then Listener is his
ears (they are often linked together – same position,
orientation, etc.).

Because the listener is unique in the scene, this class only
contains static functions and doesn’t have to be
instanciated. Calling the constructor will raise
NotImplementedError.

Usage example:

Move the listener to the position (1, 0, -5)
sfml.Listener.set_position(1, 0, -5)

Make it face the right axis (1, 0, 0)
sfml.Listener.set_direction(1, 0, 0)

Reduce the global volume
sfml.Listener.set_global_volume(50)

	
classmethod get_direction()

	Get the current direction of the listener in the scene, as a
tuple of three floats.

	
classmethod get_global_volume()

	Get the current value of the global volume, as a float.

	
classmethod get_position()

	Get the current position of the listener in the scene, as a
tuple of three floats.

	
classmethod set_global_volume(float volume)

	Change the global volume of all the sounds and musics.

The volume is a number between 0 and 100; it is combined with
the individual volume of each sound / music. The default value
for the volume is 100 (maximum).

	
classmethod set_direction(float x, float y, float z)

	Set the orientation of the listener in the scene.

The orientation defines the 3D axes of the listener (left, up,
front) in the scene. The orientation vector doesn’t have to be
normalized. The default listener’s orientation is (0, 0, -1).

	
classmethod set_position(float x, float y, float z)

	Set the position of the listener in the scene.

The default listener’s position is (0, 0, 0).

	
class sfml.Music

	This class inherits SoundStream. Will raise
NotImplementedError if the constructor is called. Use class
methods instead.

Streamed music played from an audio file. Musics are sounds that
are streamed rather than completely loaded in memory.

This is especially useful for compressed musics that usually take
hundreds of MB when they are uncompressed: by streaming it instead
of loading it entirely, you avoid saturating the memory and have
almost no loading delay.

Apart from that, a Music object has almost the same features as the
SoundBuffer/Sound pair: you can play/pause/stop
it, request its parameters (channels, sample rate), change the way
it is played (pitch, volume, 3D position, ...), etc.

As a sound stream, a music is played in its own thread in order not
to block the rest of the program. This means that you can leave the
music alone after calling play(), it will manage itself very
well.

Here is a list of all the supported formats: ogg, wav, flac, aiff,
au, raw, paf, svx, nist, voc, ircam, w64, mat4, mat5 pvf, htk, sds,
avr, sd2, caf, wve, mpc2k, and rf64.

Usage example:

Create a new music object
music = sfml.Music.open_from_file('music.ogg')

Change some parameters
music.position = (0, 1, 10) # change its 3D position
music.pitch = 2 # increase the pitch
music.volume = 50 # reduce the volume
music.loop = true # make it loop

Play it
music.play()

	
duration

	Read-only. The total duration of the music, as a Time
object.

	
classmethod open_from_file(filename)

	Open a music from an audio file. This function doesn’t start
playing the music (call play() to do
so).

PySFMLException is raised if an error occurs.

	
classmethod open_from_memory(str data)

	Open a music from an audio file in memory. This function doesn’t
start playing the music (call play() to do so).

PySFMLException is raised if an error occurs.

	
classmethod open_from_stream(InputStream stream)

	Open a music from an audio file in a custom stream. This class
method doesn’t start playing the music (call play() to do
so).

PySFMLException is raised if an error occurs.

	
class sfml.Sound([SoundBuffer buffer])

	Sound is the class to use to play sounds. It provides:

	Control (play, pause, stop)

	Ability to modify output parameters in real-time (pitch, volume, ...)

	3D spatial features (position, attenuation, ...).

Sound is perfect for playing short sounds that can fit in memory
and require no latency, like foot steps or gun shots. For longer
sounds, like background musics or long speeches, see
Music, which is based on streaming.

In order to work, a sound must be given a buffer of audio data to
play. Audio data (samples) is stored in a SoundBuffer, and
attached to a sound with the buffer attribute, or as a
constructor argument. Note that multiple sounds can use the same
sound buffer at the same time.

Usage example:

buf = sfml.SoundBuffer.load_from_file('sound.wav')
sound = sfml.Sound()
sound.buffer = buf
sound.play()

	
attenuation

	The attenuation factor of the sound.

	
buffer

	The audio buffer attached to the sound.

	
loop

	Whether or not the sound is in loop mode.

	
min_distance

	The minimum distance of the sound.

	
pitch

	The pitch of the sound.

	
playing_offset

	The current playing position of the sound, as a Time
object.

	
position

	The 3D position of the sound in the audio scene, as a three
elements tuple.

	
relative_to_listener

	Whether the sound’s position is relative to the listener or
absolute.

	
status

	Read-only. Can be one of:

	sfml.Sound.STOPPED

	sfml.Sound.PAUSED

	sfml.Sound.PLAYING

	
volume

	A value between 0 (muted) and 100 (full volume and default value).

	
pause()

	Pause the sound. This method has no effect if the sound isn’t
playing.

	
play()

	Start or resume playing the sound. This method restarts the
sound from its beginning if it’s already playing. It uses its
own thread so that it doesn’t block the rest of the program
while the sound is played.

	
stop()

	Stop playing the sound and reset the playing position. This
method has no effect is the sound is already stopped.

	
class sfml.SoundBuffer

	The constructor will raise NotImplementedError. Use one of the class
methods instead.

Storage for audio samples defining a sound.

A sound buffer holds the data of a sound, which is an array of
audio samples.

A sample is a 16 bits signed integer that defines the amplitude of
the sound at a given time. The sound is then restituted by playing
these samples at a high rate (for example, 44100 samples per second
is the standard rate used for playing CDs). In short, audio samples
are like texture pixels, and a SoundBuffer is similar to a
Texture.

A sound buffer can be loaded from a file (see
load_from_file() for the complete list of supported formats),
from memory or directly from a list of samples. It can also be
saved back to a file.

Here is the list of all the supported formats: ogg, wav, flac,
aiff, au, raw, paf, svx, nist, voc, ircam, w64, mat4, mat5 pvf,
htk, sds, avr, sd2, caf, wve, mpc2k, and rf64. (Note that mp3 isn’t
supported.)

Sound buffers alone are not very useful: they hold the audio data
but cannot be played. To do so, you need to use the Sound
class, which provides functions to play/pause/stop the sound as
well as changing the way it is outputted (volume, pitch, 3D
position, ...). This separation allows more flexibility and better
performances: a SoundBuffer is a heavy resource, and any operation
on it is slow (often too slow for real-time applications). On the
other hand, a Sound is a lightweight object, which can use
the audio data of a sound buffer and change the way it is played
without actually modifying that data. Note that it is also possible
to bind several Sound instances to the same SoundBuffer.

Usage example:

Create a new sound buffer
buf = sfml.SoundBuffer.load_from_file('sound.wav')

Create a sound source and bind it to the buffer
sound1 = sfml.Sound()
sound1.buffer = buf

Play the sound
sound1.play()

Create another sound source bound to the same buffer, this time
passing it to the constructor instead of using the buffer property
sound2 = sfml.Sound(buf)

Play it with a higher pitch -- the first sound remains unchanged
sound2.pitch = 2
sound2.play()

	
channel_count

	Read-only. The number of channels used by the sound (1 for mono, 2 for
stereo, etc.).

	
duration

	The total duration of the sound, as a Time object.

	
sample_rate

	The sample rate of the sound. This is the number of samples
played per second. The higher, the better the quality (for
example, 44100 samples/s is CD quality).

	
samples

	The samples stored in the buffer, as a byte string (str in
Python 2, bytes in Python 3). Use len() to get the
number of samples.

	
classmethod load_from_file(filename)

	Load the sound buffer from a file.

PySFMLException is an error occurs.

	
classmethod load_from_memory(bytes data)

	Load the sound buffer from a file in memory. data should be
str object in Python 2, and a bytes object in Python 3.

PySFMLException is raised if an error occurs.

	
classmethod load_from_samples(list samples, int channel_count, int sample_rate)

	Load the sound buffer from a list of audio samples. samples
should be a bytes object in Python 3, and a string in
Python 2. Each sample must be stored on two bytes (Int16 in
C++ SFML).

PySFMLException is raised if an error occurs.

	
load_from_stream(InputStream stream)

	Load the sound buffer from a custom stream.

PySFMLException is an error occurs.

	
save_to_file(filename)

	Save the sound buffer to an audio file.

PySFMLException is raised if an error occurs.

	
class sfml.SoundStream

	Abstract class for streamed audio sources.

Unlike audio buffers such as SoundBuffer, audio streams
are never completely loaded in memory. Instead, the audio data is
acquired continuously while the stream is playing. This behaviour
allows to play a sound with no loading delay, and keeps the memory
consumption very low.

To create your own sound stream, you must inherit this class and at
least define a on_get_data() method that receives a
Chunk parameter. on_seek(Time) may be implemented as
well. Any exception raised in these two methods will be printed to
sys.stdout and swallowed. This is because it doesn’t seem
possible to catch an exception raised in another thread, or at
least it doesn’t seem reliable. So try to keep them as short as
possible, and if they don’t work, check the console. See
examples/soundstream.py for an example.

My streaming tests show that this class is still too slow. I
optimized it as much as I could, and I’m not sure how to improve it
now. Also, on_seek() seems to hang the program when seeking is
used.

	
attenuation

	The attenuation factor of the sound.

	
channel_count

	Read-only. The number of channels used by the sound (1 for mono, 2 for
stereo, etc.).

	
loop

	Whether or not the stream is in loop mode.

	
min_distance

	The minimum distance of the sound.

	
pitch

	The pitch of the sound.

	
playing_offset

	The current position of the stream, as a Time object.

	
position

	The 3D position of the sound the audio scene, as a three
elements tuple.

	
relative_to_listener

	Whether the sound’s position is relative to the listener or
absolute.

	
sample_rate

	Read-only. The sample rate of the stream. This is the number of
audio samples played per second. The higher, the better the
quality.

	
status

	Read-only. Can be one of:

	sfml.SoundStream.STOPPED

	sfml.SoundStream.PAUSED

	sfml.SoundStream.PLAYING

	
volume

	A value between 0 (muted) and 100 (full volume and default value).

	
initialize(int channel_count, int sample_rate)

	This method must be called by user-defined streams. It’s not
available from built-in sound streams such as Music.

	
pause()

	Pause the stream. This method has no effect if the stream isn’t
playing.

	
play()

	Start or resume playing the stream. This method restarts the
stream from its beginning if it’s already playing. It uses its
own thread so that it doesn’t block the rest of the program
while the stream is played.

	
stop()

	Stop playing the stream and reset the playing position. This
method has no effect is the stream is already stopped.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pySFML - Cython 0.2 documentation

Licenses

Project license

Copyright 2011, 2012 Bastien Léonard. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY BASTIEN LÉONARD “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BASTIEN LÉONARD OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Documentation license

Copyright 2011, 2012 Bastien Léonard. All rights reserved.

Redistribution and use in source (reStructuredText) and ‘compiled’
forms (HTML, PDF, PostScript, RTF and so forth) with or without
modification, are permitted provided that the following conditions
are met:

	Redistributions of source code (reStructuredText) must retain
the above copyright notice, this list of conditions and the
following disclaimer as the first lines of this file unmodified.

	Redistributions in compiled form (converted to HTML, PDF,
PostScript, RTF and other formats) must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

THIS DOCUMENTATION IS PROVIDED BY BASTIEN LÉONARD “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BASTIEN LÉONARD BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pySFML - Cython 0.2 documentation

 Python Module Index

 s

 			

 		
 s	

 	
 	
 sfml	

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	pySFML - Cython 0.2 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	

 	a (sfml.Color attribute)

 	A (sfml.Keyboard attribute)

 	active (sfml.RenderTexture attribute)

 	

 	(sfml.RenderWindow attribute)

 	ADD (sfml.Keyboard attribute)

 	advance (sfml.Glyph attribute)

 	antialiasing_level (sfml.ContextSettings attribute)

 	

 	as_microseconds() (sfml.Time method)

 	as_milliseconds() (sfml.Time method)

 	as_seconds() (sfml.Time method)

 	attenuation (sfml.Sound attribute)

 	

 	(sfml.SoundStream attribute)

 	AXIS_COUNT (sfml.Joystick attribute)

B

 	

 	b (sfml.Color attribute)

 	B (sfml.Keyboard attribute)

 	BACK_SLASH (sfml.Keyboard attribute)

 	BACK_SPACE (sfml.Keyboard attribute)

 	bind() (sfml.Shader method)

 	

 	(sfml.Texture method)

 	bits_per_pixel (sfml.VideoMode attribute)

 	BLACK (sfml.Color attribute)

 	BLEND_ADD (in module sfml)

 	

 	BLEND_ALPHA (in module sfml)

 	blend_mode (sfml.RenderStates attribute)

 	BLEND_MULTIPLY (in module sfml)

 	BLEND_NONE (in module sfml)

 	BLUE (sfml.Color attribute)

 	bounds (sfml.Glyph attribute)

 	buffer (sfml.Sound attribute)

 	BUTTON_COUNT (sfml.Joystick attribute)

 	

 	(sfml.Mouse attribute)

C

 	

 	C (sfml.Keyboard attribute)

 	center (sfml.View attribute)

 	channel_count (sfml.SoundBuffer attribute)

 	

 	(sfml.SoundStream attribute)

 	character_size (sfml.Text attribute)

 	Chunk (class in sfml)

 	CircleShape (class in sfml)

 	clear() (sfml.RenderTarget method)

 	Clock (class in sfml)

 	CLOSE (sfml.Style attribute)

 	close() (sfml.RenderWindow method)

 	CLOSED (sfml.Event attribute)

 	Color (class in sfml)

 	color (sfml.Sprite attribute)

 	

 	(sfml.Text attribute)

 	(sfml.Vertex attribute)

 	

 	combine() (sfml.Transform method)

 	COMMA (sfml.Keyboard attribute)

 	contains() (sfml.FloatRect method)

 	

 	(sfml.IntRect method)

 	ContextSettings (class in sfml)

 	ConvexShape (class in sfml)

 	copy() (sfml.Color method)

 	

 	(sfml.FloatRect method)

 	(sfml.Image method)

 	(sfml.IntRect method)

 	(sfml.Sprite method)

 	(sfml.Time method)

 	(sfml.Transform method)

 	(sfml.Vector2f method)

 	(sfml.Vertex method)

 	copy_to_image() (sfml.Texture method)

 	COUNT (sfml.Joystick attribute)

 	create() (sfml.RenderWindow method)

 	create_mask_from_color() (sfml.Image method)

 	CURRENT_TEXTURE (sfml.Shader attribute)

 	CYAN (sfml.Color attribute)

D

 	

 	D (sfml.Keyboard attribute)

 	DASH (sfml.Keyboard attribute)

 	DEFAULT (sfml.RenderStates attribute)

 	

 	(sfml.Style attribute)

 	default_encoding (in module sfml)

 	default_view (sfml.RenderTarget attribute)

 	DELETE (sfml.Keyboard attribute)

 	

 	depth_bits (sfml.ContextSettings attribute)

 	display() (sfml.RenderTexture method)

 	

 	(sfml.RenderWindow method)

 	DIVIDE (sfml.Keyboard attribute)

 	DOWN (sfml.Keyboard attribute)

 	draw() (sfml.RenderTarget method)

 	duration (sfml.Music attribute)

 	

 	(sfml.SoundBuffer attribute)

E

 	

 	E (sfml.Keyboard attribute)

 	elapsed_time (sfml.Clock attribute)

 	END (sfml.Keyboard attribute)

 	

 	EQUAL (sfml.Keyboard attribute)

 	ESCAPE (sfml.Keyboard attribute)

 	Event (class in sfml)

F

 	

 	F (sfml.Keyboard attribute)

 	F1 (sfml.Keyboard attribute)

 	F10 (sfml.Keyboard attribute)

 	F11 (sfml.Keyboard attribute)

 	F12 (sfml.Keyboard attribute)

 	F13 (sfml.Keyboard attribute)

 	F14 (sfml.Keyboard attribute)

 	F15 (sfml.Keyboard attribute)

 	F2 (sfml.Keyboard attribute)

 	F3 (sfml.Keyboard attribute)

 	F4 (sfml.Keyboard attribute)

 	F5 (sfml.Keyboard attribute)

 	F6 (sfml.Keyboard attribute)

 	F7 (sfml.Keyboard attribute)

 	F8 (sfml.Keyboard attribute)

 	

 	F9 (sfml.Keyboard attribute)

 	fill_color (sfml.Shape attribute)

 	find_character_pos() (sfml.Text method)

 	flip_horizontally() (sfml.Image method)

 	flip_vertically() (sfml.Image method)

 	FloatRect (class in sfml)

 	Font (class in sfml)

 	font (sfml.Text attribute)

 	FRAGMENT (sfml.Shader attribute)

 	framerate_limit (sfml.RenderWindow attribute)

 	from_center_and_size() (sfml.View class method)

 	from_rect() (sfml.View class method)

 	from_window_handle() (sfml.RenderWindow class method)

 	FULLSCREEN (sfml.Style attribute)

G

 	

 	g (sfml.Color attribute)

 	G (sfml.Keyboard attribute)

 	GAINED_FOCUS (sfml.Event attribute)

 	get_axis_position() (sfml.Joystick class method)

 	get_button_count() (sfml.Joystick class method)

 	get_desktop_mode() (sfml.VideoMode class method)

 	get_direction() (sfml.Listener class method)

 	get_fullscreen_modes() (sfml.VideoMode class method)

 	get_global_volume() (sfml.Listener class method)

 	get_glyph() (sfml.Font method)

 	get_inverse() (sfml.Transform method)

 	get_inverse_transform() (sfml.Transformable method)

 	get_kerning() (sfml.Font method)

 	get_line_spacing() (sfml.Font method)

 	

 	get_pixel() (sfml.Image method)

 	get_pixels() (sfml.Image method)

 	get_point() (sfml.ConvexShape method)

 	

 	(sfml.Shape method)

 	get_point_count() (sfml.ConvexShape method)

 	

 	(sfml.Shape method)

 	get_position() (sfml.Listener class method)

 	

 	(sfml.Mouse class method)

 	get_size() (sfml.InputStream method)

 	get_texture() (sfml.Font method)

 	get_texture_rect() (sfml.Sprite method)

 	get_transform() (sfml.Transformable method)

 	get_viewport() (sfml.RenderTarget method)

 	global_bounds (sfml.Shape attribute)

 	

 	(sfml.Sprite attribute)

 	(sfml.Text attribute)

 	Glyph (class in sfml)

 	GREEN (sfml.Color attribute)

H

 	

 	H (sfml.Keyboard attribute)

 	has_axis() (sfml.Joystick class method)

 	

 	height (sfml.FloatRect attribute)

 	

 	(sfml.Image attribute)

 	(sfml.IntRect attribute)

 	(sfml.RenderTarget attribute)

 	(sfml.RenderWindow attribute)

 	(sfml.Texture attribute)

 	(sfml.VideoMode attribute)

 	(sfml.View attribute)

 	HOME (sfml.Keyboard attribute)

I

 	

 	I (sfml.Keyboard attribute)

 	IDENTITY (sfml.Transform attribute)

 	Image (class in sfml)

 	initialize() (sfml.SoundStream method)

 	InputStream (class in sfml)

 	INSERT (sfml.Keyboard attribute)

 	intersects() (sfml.FloatRect method)

 	

 	(sfml.IntRect method)

 	

 	IntRect (class in sfml)

 	IS_AVAILABLE (sfml.Shader attribute)

 	is_button_pressed() (sfml.Joystick class method)

 	

 	(sfml.Mouse class method)

 	is_connected() (sfml.Joystick class method)

 	is_key_pressed() (sfml.Keyboard class method)

 	is_valid() (sfml.VideoMode method)

 	iter_events() (sfml.RenderWindow method)

J

 	

 	J (sfml.Keyboard attribute)

 	Joystick (class in sfml)

 	JOYSTICK_BUTTON_PRESSED (sfml.Event attribute)

 	JOYSTICK_BUTTON_RELEASED (sfml.Event attribute)

 	

 	JOYSTICK_CONNECTED (sfml.Event attribute)

 	JOYSTICK_DISCONNECTED (sfml.Event attribute)

 	JOYSTICK_MOVED (sfml.Event attribute)

 	joystick_threshold (sfml.RenderWindow attribute)

K

 	

 	K (sfml.Keyboard attribute)

 	KEY_COUNT (sfml.Keyboard attribute)

 	KEY_PRESSED (sfml.Event attribute)

 	

 	KEY_RELEASED (sfml.Event attribute)

 	key_repeat_enabled (sfml.RenderWindow attribute)

 	Keyboard (class in sfml)

L

 	

 	L (sfml.Keyboard attribute)

 	L_ALT (sfml.Keyboard attribute)

 	L_BRACKET (sfml.Keyboard attribute)

 	L_CONTROL (sfml.Keyboard attribute)

 	L_SHIFT (sfml.Keyboard attribute)

 	L_SYSTEM (sfml.Keyboard attribute)

 	left (sfml.FloatRect attribute)

 	

 	(sfml.IntRect attribute)

 	LEFT (sfml.Keyboard attribute)

 	

 	(sfml.Mouse attribute)

 	LINES (in module sfml)

 	LINES_STRIP (in module sfml)

 	Listener (class in sfml)

 	load_both_types_from_file() (sfml.Shader class method)

 	

 	load_both_types_from_memory() (sfml.Shader class method)

 	load_both_types_from_stream() (sfml.Shader class method)

 	load_from_file() (sfml.Font class method)

 	

 	(sfml.Image class method)

 	(sfml.Shader class method)

 	(sfml.SoundBuffer class method)

 	(sfml.Texture class method)

 	load_from_image() (sfml.Texture class method)

 	load_from_memory() (sfml.Font class method)

 	

 	(sfml.Image class method)

 	(sfml.Shader class method)

 	(sfml.SoundBuffer class method)

 	(sfml.Texture class method)

 	load_from_pixels() (sfml.Image class method)

 	load_from_samples() (sfml.SoundBuffer class method)

 	load_from_stream() (sfml.Font class method)

 	

 	(sfml.Image class method)

 	(sfml.Shader class method)

 	(sfml.SoundBuffer method)

 	(sfml.Texture class method)

 	local_bounds (sfml.Shape attribute)

 	

 	(sfml.Sprite attribute)

 	(sfml.Text attribute)

 	loop (sfml.Sound attribute)

 	

 	(sfml.SoundStream attribute)

 	LOST_FOCUS (sfml.Event attribute)

M

 	

 	M (sfml.Keyboard attribute)

 	MAGENTA (sfml.Color attribute)

 	major_version (sfml.ContextSettings attribute)

 	map_coords_to_pixel() (sfml.RenderTarget method)

 	map_pixel_to_coords() (sfml.RenderTarget method)

 	matrix (sfml.Transform attribute)

 	MAXIMUM_SIZE (sfml.Texture attribute)

 	MENU (sfml.Keyboard attribute)

 	message (sfml.PySFMLException attribute)

 	MIDDLE (sfml.Mouse attribute)

 	min_distance (sfml.Sound attribute)

 	

 	(sfml.SoundStream attribute)

 	minor_version (sfml.ContextSettings attribute)

 	

 	Mouse (class in sfml)

 	MOUSE_BUTTON_PRESSED (sfml.Event attribute)

 	MOUSE_BUTTON_RELEASED (sfml.Event attribute)

 	mouse_cursor_visible (sfml.RenderWindow attribute)

 	MOUSE_ENTERED (sfml.Event attribute)

 	MOUSE_LEFT (sfml.Event attribute)

 	MOUSE_MOVED (sfml.Event attribute)

 	MOUSE_WHEEL_MOVED (sfml.Event attribute)

 	move() (sfml.Transformable method)

 	

 	(sfml.View method)

 	MULTIPLY (sfml.Keyboard attribute)

 	Music (class in sfml)

N

 	

 	N (sfml.Keyboard attribute)

 	NAMES (sfml.Event attribute)

 	NONE (sfml.Style attribute)

 	NORMALIZED (sfml.Texture attribute)

 	NUM0 (sfml.Keyboard attribute)

 	NUM1 (sfml.Keyboard attribute)

 	NUM2 (sfml.Keyboard attribute)

 	NUM3 (sfml.Keyboard attribute)

 	NUM4 (sfml.Keyboard attribute)

 	NUM5 (sfml.Keyboard attribute)

 	NUM6 (sfml.Keyboard attribute)

 	NUM7 (sfml.Keyboard attribute)

 	

 	NUM8 (sfml.Keyboard attribute)

 	NUM9 (sfml.Keyboard attribute)

 	NUMPAD0 (sfml.Keyboard attribute)

 	NUMPAD1 (sfml.Keyboard attribute)

 	NUMPAD2 (sfml.Keyboard attribute)

 	NUMPAD3 (sfml.Keyboard attribute)

 	NUMPAD4 (sfml.Keyboard attribute)

 	NUMPAD5 (sfml.Keyboard attribute)

 	NUMPAD6 (sfml.Keyboard attribute)

 	NUMPAD7 (sfml.Keyboard attribute)

 	NUMPAD8 (sfml.Keyboard attribute)

 	NUMPAD9 (sfml.Keyboard attribute)

O

 	

 	O (sfml.Keyboard attribute)

 	open (sfml.RenderWindow attribute)

 	open_from_file() (sfml.Music class method)

 	open_from_memory() (sfml.Music class method)

 	

 	open_from_stream() (sfml.Music class method)

 	origin (sfml.Transformable attribute)

 	outline_color (sfml.Shape attribute)

 	outline_thickness (sfml.Shape attribute)

P

 	

 	P (sfml.Keyboard attribute)

 	PAGE_DOWN (sfml.Keyboard attribute)

 	PAGE_UP (sfml.Keyboard attribute)

 	PAUSE (sfml.Keyboard attribute)

 	pause() (sfml.Sound method)

 	

 	(sfml.SoundStream method)

 	PERIOD (sfml.Keyboard attribute)

 	pitch (sfml.Sound attribute)

 	

 	(sfml.SoundStream attribute)

 	PIXELS (sfml.Texture attribute)

 	play() (sfml.Sound method)

 	

 	(sfml.SoundStream method)

 	playing_offset (sfml.Sound attribute)

 	

 	(sfml.SoundStream attribute)

 	

 	point_count (sfml.CircleShape attribute)

 	POINTS (in module sfml)

 	poll_event() (sfml.RenderWindow method)

 	pop_gl_states() (sfml.RenderTarget method)

 	position (sfml.RenderWindow attribute)

 	

 	(sfml.Sound attribute)

 	(sfml.SoundStream attribute)

 	(sfml.Transformable attribute)

 	(sfml.Vertex attribute)

 	POV_X (sfml.Joystick attribute)

 	POV_Y (sfml.Joystick attribute)

 	push_gl_states() (sfml.RenderTarget method)

 	PySFMLException

Q

 	

 	Q (sfml.Keyboard attribute)

 	QUADS (in module sfml)

 	

 	QUOTE (sfml.Keyboard attribute)

R

 	

 	r (sfml.Color attribute)

 	R (sfml.Joystick attribute)

 	

 	(sfml.Keyboard attribute)

 	R_ALT (sfml.Keyboard attribute)

 	R_BRACKET (sfml.Keyboard attribute)

 	R_CONTROL (sfml.Keyboard attribute)

 	R_SHIFT (sfml.Keyboard attribute)

 	R_SYSTEM (sfml.Keyboard attribute)

 	radius (sfml.CircleShape attribute)

 	read() (sfml.InputStream method)

 	RectangleShape (class in sfml)

 	RED (sfml.Color attribute)

 	relative_to_listener (sfml.Sound attribute)

 	

 	(sfml.SoundStream attribute)

 	RenderStates (class in sfml)

 	

 	RenderTarget (class in sfml)

 	RenderTexture (class in sfml)

 	RenderWindow (class in sfml)

 	repeated (sfml.Texture attribute)

 	reset() (sfml.View method)

 	reset_gl_states() (sfml.RenderTarget method)

 	RESIZE (sfml.Style attribute)

 	RESIZED (sfml.Event attribute)

 	restart() (sfml.Clock method)

 	RETURN (sfml.Keyboard attribute)

 	RIGHT (sfml.Keyboard attribute)

 	

 	(sfml.Mouse attribute)

 	rotate() (sfml.Transform method)

 	

 	(sfml.Transformable method)

 	(sfml.View method)

 	rotation (sfml.Transformable attribute)

 	

 	(sfml.View attribute)

S

 	

 	S (sfml.Keyboard attribute)

 	sample_rate (sfml.SoundBuffer attribute)

 	

 	(sfml.SoundStream attribute)

 	samples (sfml.Chunk attribute)

 	

 	(sfml.SoundBuffer attribute)

 	save_to_file() (sfml.Image method)

 	

 	(sfml.SoundBuffer method)

 	scale (sfml.Transformable attribute)

 	scale() (sfml.Transform method)

 	

 	(sfml.Transformable method)

 	seek() (sfml.InputStream method)

 	SEMI_COLON (sfml.Keyboard attribute)

 	set_direction() (sfml.Listener class method)

 	set_global_volume() (sfml.Listener class method)

 	set_icon() (sfml.RenderWindow method)

 	set_parameter() (sfml.Shader method)

 	set_pixel() (sfml.Image method)

 	set_point() (sfml.ConvexShape method)

 	set_point_count() (sfml.ConvexShape method)

 	set_position() (sfml.Listener class method)

 	

 	(sfml.Mouse class method)

 	set_texture() (sfml.Shape method)

 	

 	(sfml.Sprite method)

 	set_texture_rect() (sfml.Sprite method)

 	settings (sfml.RenderWindow attribute)

 	sfml (module), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]

 	

 	Shader (class in sfml)

 	shader (sfml.RenderStates attribute)

 	Shape (class in sfml)

 	size (sfml.Image attribute)

 	

 	(sfml.RectangleShape attribute)

 	(sfml.RenderTarget attribute)

 	(sfml.RenderWindow attribute)

 	(sfml.Texture attribute)

 	(sfml.View attribute)

 	SLASH (sfml.Keyboard attribute)

 	smooth (sfml.RenderTexture attribute)

 	

 	(sfml.Texture attribute)

 	Sound (class in sfml)

 	SoundBuffer (class in sfml)

 	SoundStream (class in sfml)

 	SPACE (sfml.Keyboard attribute)

 	Sprite (class in sfml)

 	status (sfml.Sound attribute)

 	

 	(sfml.SoundStream attribute)

 	stencil_bits (sfml.ContextSettings attribute)

 	stop() (sfml.Sound method)

 	

 	(sfml.SoundStream method)

 	string (sfml.Text attribute)

 	Style (class in sfml)

 	style (sfml.Text attribute)

 	SUBTRACT (sfml.Keyboard attribute)

 	system_handle (sfml.RenderWindow attribute)

T

 	

 	T (sfml.Keyboard attribute)

 	TAB (sfml.Keyboard attribute)

 	tell() (sfml.InputStream method)

 	tex_coords (sfml.Vertex attribute)

 	Text (class in sfml)

 	TEXT_ENTERED (sfml.Event attribute)

 	Texture (class in sfml)

 	texture (sfml.RenderStates attribute)

 	

 	(sfml.RenderTexture attribute)

 	(sfml.Shape attribute)

 	(sfml.Sprite attribute)

 	texture_rect (sfml.Glyph attribute)

 	

 	(sfml.Shape attribute)

 	TILDE (sfml.Keyboard attribute)

 	Time (class in sfml)

 	title (sfml.RenderWindow attribute)

 	

 	TITLEBAR (sfml.Style attribute)

 	top (sfml.FloatRect attribute)

 	

 	(sfml.IntRect attribute)

 	Transform (class in sfml)

 	transform (sfml.RenderStates attribute)

 	transform_point() (sfml.Transform method)

 	transform_rect() (sfml.Transform method)

 	Transformable (class in sfml)

 	translate() (sfml.Transform method)

 	TRANSPARENT (sfml.Color attribute)

 	TRIANGLES (in module sfml)

 	TRIANGLES_FAN (in module sfml)

 	TRIANGLES_STIP (in module sfml)

U

 	

 	U (sfml.Joystick attribute)

 	

 	(sfml.Keyboard attribute)

 	UP (sfml.Keyboard attribute)

 	

 	update() (sfml.Joystick class method)

 	

 	(sfml.Shape method)

 	(sfml.Texture method)

V

 	

 	V (sfml.Joystick attribute)

 	

 	(sfml.Keyboard attribute)

 	Vector2f (class in sfml)

 	Vertex (class in sfml)

 	VERTEX (sfml.Shader attribute)

 	vertical_sync_enabled (sfml.RenderWindow attribute)

 	VideoMode (class in sfml)

 	

 	View (class in sfml)

 	view (sfml.RenderTarget attribute)

 	viewport (sfml.View attribute)

 	visible (sfml.RenderWindow attribute)

 	volume (sfml.Sound attribute)

 	

 	(sfml.SoundStream attribute)

W

 	

 	W (sfml.Keyboard attribute)

 	wait_event() (sfml.RenderWindow method)

 	

 	WHITE (sfml.Color attribute)

 	width (sfml.FloatRect attribute)

 	

 	(sfml.Image attribute)

 	(sfml.IntRect attribute)

 	(sfml.RenderTarget attribute)

 	(sfml.RenderWindow attribute)

 	(sfml.Texture attribute)

 	(sfml.VideoMode attribute)

 	(sfml.View attribute)

X

 	

 	X (sfml.Joystick attribute)

 	

 	(sfml.Keyboard attribute)

 	x (sfml.Transformable attribute)

 	

 	(sfml.Vector2f attribute)

 	

 	X_BUTTON1 (sfml.Mouse attribute)

 	X_BUTTON2 (sfml.Mouse attribute)

Y

 	

 	Y (sfml.Joystick attribute)

 	

 	(sfml.Keyboard attribute)

 	y (sfml.Transformable attribute)

 	

 	(sfml.Vector2f attribute)

 	

 	YELLOW (sfml.Color attribute)

Z

 	

 	Z (sfml.Joystick attribute)

 	

 	(sfml.Keyboard attribute)

 	ZERO (sfml.Time attribute)

 	

 	zoom() (sfml.View method)

 Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/down.png

_static/up.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		pySFML - Cython 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, 2012 Bastien Léonard.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

